7,645 research outputs found

    Airborne and Terrestrial Laser Scanning Data for the Assessment of Standing and Lying Deadwood: Current Situation and New Perspectives

    Get PDF
    LiDAR technology is finding uses in the forest sector, not only for surveys in producing forests but also as a tool to gain a deeper understanding of the importance of the three-dimensional component of forest environments. Developments of platforms and sensors in the last decades have highlighted the capacity of this technology to catch relevant details, even at finer scales. This drives its usage towards more ecological topics and applications for forest management. In recent years, nature protection policies have been focusing on deadwood as a key element for the health of forest ecosystems and wide-scale assessments are necessary for the planning process on a landscape scale. Initial studies showed promising results in the identification of bigger deadwood components (e.g., snags, logs, stumps), employing data not specifically collected for the purpose. Nevertheless, many efforts should still be made to transfer the available methodologies to an operational level. Newly available platforms (e.g., Mobile Laser Scanner) and sensors (e.g., Multispectral Laser Scanner) might provide new opportunities for this field of study in the near future

    Integrated Research Plan to Assess the Combined Effects of Space Radiation, Altered Gravity, and Isolation and Confinement on Crew Health and Performance: Problem Statement

    Get PDF
    Future crewed exploration missions to Mars could last up to three years and will expose astronauts to unprecedented environmental challenges. Challenges to the nervous system during these missions will include factors of: space radiation that can damage sensitive neurons in the central nervous system (CNS); isolation and confinement can affect cognition and behavior; and altered gravity that will change the astronauts perception of their environment and their spatial orientation, and will affect their coordination, balance, and locomotion. In the past, effects of spaceflight stressors have been characterized individually. However, long-term, simultaneous exposure to multiple stressors will produce a range of interrelated behavioral and biological effects that have the potential to adversely affect operationally relevant crew performance. These complex environmental challenges might interact synergistically and increase the overall risk to the health and performance of the astronaut. Therefore, NASAs Human Research Program (HRP) has directed an integrated approach to characterize and mitigate the risk to the CNS from simultaneous exposure to these multiple spaceflight factors. The proposed research strategy focuses on systematically evaluating the relationships among three existing research risks associated with spaceflight: Risk of Acute (In-flight) and Late Central Nervous System Effects from Radiation (CNS), Risk of Adverse Cognitive or Behavioral Conditions and Psychiatric Disorders (BMed), and Risk of Impaired Control of Spacecraft/Associated Systems and Decreased Mobility Due to Vestibular/Sensorimotor Alterations Associated with Spaceflight (SM). NASAs HRP approach is intended to identify the magnitude and types of interactions as they affect behavior, especially as it relates to operationally relevant performance (e.g., performance that depends on reaction time, procedural memory, etc.). In order to appropriately characterize this risk of multiple spaceflight environmental stressors, there is a recognition of the need to leverage research approaches using appropriate animal models and behavioral constructs. Very little has been documented on the combined effects of altered gravity, space radiation, and other psychological and cognitive stressors on the CNS. Preliminary evidence from rodents suggest that a combination of a minimum of exposures to even two of three stressors of: simulated space radiation, simulated microgravity, and simulated isolation and confinement, have produced different and more pronounced biological and performance effects than exposure to these same stressors individually. Structural and functional changes to the CNS of rodents exposed to transdisciplinary combined stressors indicate that important processes related to information processing are likely altered including impairment of exploratory and risk taking behaviors, as well as executive function including learning, memory, and cognitive flexibility all of which may be linked to changes in related operational relevant performance. The fully integrated research plan outlines approaches to evaluate how combined, potentially synergistic, impacts of simultaneous exposures to spaceflight hazards will affect an astronauts CNS and their operationally relevant performance during future exploration missions, including missions to the Moon and Mars. The ultimate goals are to derive risk estimates for the combined, potentially synergistic, effects of the three major spaceflight hazards that will establish acceptable maximum decrement or change in a physiological or behavioral parameters during or after spaceflight, the acceptable limit of exposure to a spaceflight factor, and to evaluate strategies to mitigate any associated decrements in operationally relevant performance

    Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age

    Get PDF
    Simultaneous Localization and Mapping (SLAM)consists in the concurrent construction of a model of the environment (the map), and the estimation of the state of the robot moving within it. The SLAM community has made astonishing progress over the last 30 years, enabling large-scale real-world applications, and witnessing a steady transition of this technology to industry. We survey the current state of SLAM. We start by presenting what is now the de-facto standard formulation for SLAM. We then review related work, covering a broad set of topics including robustness and scalability in long-term mapping, metric and semantic representations for mapping, theoretical performance guarantees, active SLAM and exploration, and other new frontiers. This paper simultaneously serves as a position paper and tutorial to those who are users of SLAM. By looking at the published research with a critical eye, we delineate open challenges and new research issues, that still deserve careful scientific investigation. The paper also contains the authors' take on two questions that often animate discussions during robotics conferences: Do robots need SLAM? and Is SLAM solved

    Re-Tooling the Agency's Engineering Predictive Practices for Durability and Damage Tolerance

    Get PDF
    Over the past decade, the Agency has placed less emphasis on testing and has increasingly relied on computational methods to assess durability and damage tolerance (D&DT) behavior when evaluating design margins for fracture-critical components. With increased emphasis on computational D&DT methods as the standard practice, it is paramount that capabilities of these methods are understood, the methods are used within their technical limits, and validation by well-designed tests confirms understanding. The D&DT performance of a component is highly dependent on parameters in the neighborhood of the damage. This report discusses D&DT method vulnerabilities
    • …
    corecore