1,911 research outputs found

    Advances in Self Organising Maps

    Full text link
    The Self-Organizing Map (SOM) with its related extensions is the most popular artificial neural algorithm for use in unsupervised learning, clustering, classification and data visualization. Over 5,000 publications have been reported in the open literature, and many commercial projects employ the SOM as a tool for solving hard real-world problems. Each two years, the "Workshop on Self-Organizing Maps" (WSOM) covers the new developments in the field. The WSOM series of conferences was initiated in 1997 by Prof. Teuvo Kohonen, and has been successfully organized in 1997 and 1999 by the Helsinki University of Technology, in 2001 by the University of Lincolnshire and Humberside, and in 2003 by the Kyushu Institute of Technology. The Universit\'{e} Paris I Panth\'{e}on Sorbonne (SAMOS-MATISSE research centre) organized WSOM 2005 in Paris on September 5-8, 2005.Comment: Special Issue of the Neural Networks Journal after WSOM 05 in Pari

    Seven properties of self-organization in the human brain

    Get PDF
    The principle of self-organization has acquired a fundamental significance in the newly emerging field of computational philosophy. Self-organizing systems have been described in various domains in science and philosophy including physics, neuroscience, biology and medicine, ecology, and sociology. While system architecture and their general purpose may depend on domain-specific concepts and definitions, there are (at least) seven key properties of self-organization clearly identified in brain systems: 1) modular connectivity, 2) unsupervised learning, 3) adaptive ability, 4) functional resiliency, 5) functional plasticity, 6) from-local-to-global functional organization, and 7) dynamic system growth. These are defined here in the light of insight from neurobiology, cognitive neuroscience and Adaptive Resonance Theory (ART), and physics to show that self-organization achieves stability and functional plasticity while minimizing structural system complexity. A specific example informed by empirical research is discussed to illustrate how modularity, adaptive learning, and dynamic network growth enable stable yet plastic somatosensory representation for human grip force control. Implications for the design of “strong” artificial intelligence in robotics are brought forward

    Applying science of learning in education: Infusing psychological science into the curriculum

    Get PDF
    The field of specialization known as the science of learning is not, in fact, one field. Science of learning is a term that serves as an umbrella for many lines of research, theory, and application. A term with an even wider reach is Learning Sciences (Sawyer, 2006). The present book represents a sliver, albeit a substantial one, of the scholarship on the science of learning and its application in educational settings (Science of Instruction, Mayer 2011). Although much, but not all, of what is presented in this book is focused on learning in college and university settings, teachers of all academic levels may find the recommendations made by chapter authors of service. The overarching theme of this book is on the interplay between the science of learning, the science of instruction, and the science of assessment (Mayer, 2011). The science of learning is a systematic and empirical approach to understanding how people learn. More formally, Mayer (2011) defined the science of learning as the “scientific study of how people learn” (p. 3). The science of instruction (Mayer 2011), informed in part by the science of learning, is also on display throughout the book. Mayer defined the science of instruction as the “scientific study of how to help people learn” (p. 3). Finally, the assessment of student learning (e.g., learning, remembering, transferring knowledge) during and after instruction helps us determine the effectiveness of our instructional methods. Mayer defined the science of assessment as the “scientific study of how to determine what people know” (p.3). Most of the research and applications presented in this book are completed within a science of learning framework. Researchers first conducted research to understand how people learn in certain controlled contexts (i.e., in the laboratory) and then they, or others, began to consider how these understandings could be applied in educational settings. Work on the cognitive load theory of learning, which is discussed in depth in several chapters of this book (e.g., Chew; Lee and Kalyuga; Mayer; Renkl), provides an excellent example that documents how science of learning has led to valuable work on the science of instruction. Most of the work described in this book is based on theory and research in cognitive psychology. We might have selected other topics (and, thus, other authors) that have their research base in behavior analysis, computational modeling and computer science, neuroscience, etc. We made the selections we did because the work of our authors ties together nicely and seemed to us to have direct applicability in academic settings

    Self-Organization of Spiking Neural Networks for Visual Object Recognition

    Get PDF
    On one hand, the visual system has the ability to differentiate between very similar objects. On the other hand, we can also recognize the same object in images that vary drastically, due to different viewing angle, distance, or illumination. The ability to recognize the same object under different viewing conditions is called invariant object recognition. Such object recognition capabilities are not immediately available after birth, but are acquired through learning by experience in the visual world. In many viewing situations different views of the same object are seen in a tem- poral sequence, e.g. when we are moving an object in our hands while watching it. This creates temporal correlations between successive retinal projections that can be used to associate different views of the same object. Theorists have therefore pro- posed a synaptic plasticity rule with a built-in memory trace (trace rule). In this dissertation I present spiking neural network models that offer possible explanations for learning of invariant object representations. These models are based on the following hypotheses: 1. Instead of a synaptic trace rule, persistent firing of recurrently connected groups of neurons can serve as a memory trace for invariance learning. 2. Short-range excitatory lateral connections enable learning of self-organizing topographic maps that represent temporal as well as spatial correlations. 3. When trained with sequences of object views, such a network can learn repre- sentations that enable invariant object recognition by clustering different views of the same object within a local neighborhood. 4. Learning of representations for very similar stimuli can be enabled by adaptive inhibitory feedback connections. The study presented in chapter 3.1 details an implementation of a spiking neural network to test the first three hypotheses. This network was tested with stimulus sets that were designed in two feature dimensions to separate the impact of tempo- ral and spatial correlations on learned topographic maps. The emerging topographic maps showed patterns that were dependent on the temporal order of object views during training. Our results show that pooling over local neighborhoods of the to- pographic map enables invariant recognition. Chapter 3.2 focuses on the fourth hypothesis. There we examine how the adaptive feedback inhibition (AFI) can improve the ability of a network to discriminate between very similar patterns. The results show that with AFI learning is faster, and the network learns selective representations for stimuli with higher levels of overlap than without AFI. Results of chapter 3.1 suggest a functional role for topographic object representa- tions that are known to exist in the inferotemporal cortex, and suggests a mechanism for the development of such representations. The AFI model implements one aspect of predictive coding: subtraction of a prediction from the actual input of a system. The successful implementation in a biologically plausible network of spiking neurons shows that predictive coding can play a role in cortical circuits

    Family names as indicators of Britain’s changing regional geography

    Get PDF
    In recent years the geography of surnames has become increasingly researched in genetics, epidemiology, linguistics and geography. Surnames provide a useful data source for the analysis of population structure, migrations, genetic relationships and levels of cultural diffusion and interaction between communities. The Worldnames database (www.publicprofiler.org/worldnames) of 300 million people from 26 countries georeferenced in many cases to the equivalent of UK Postcode level provides a rich source of surname data. This work has focused on the UK component of this dataset, that is the 2001 Enhanced Electoral Role, georeferenced to Output Area level. Exploratory analysis of the distribution of surnames across the UK shows that clear regions exist, such as Cornwall, Central Wales and Scotland, in agreement with anecdotal evidence. This study is concerned with applying a wide range of methods to the UK dataset to test their sensitivity and consistency to surname regions. Methods used thus far are hierarchical and non-hierarchical clustering, barrier algorithms, such as the Monmonier Algorithm, and Multidimensional Scaling. These, to varying degrees, have highlighted the regionality of UK surnames and provide strong foundations to future work and refinement in the UK context. Establishing a firm methodology has enabled comparisons to be made with data from the Great British 1881 census, developing insights into population movements from within and outside Great Britain

    Multimedia Computer-based Training And Learning: The Role Of Referential Connections In Supporting Cognitive Learning Outcomes

    Get PDF
    Multimedia theory has generated a number of principles and guidelines to support computer-based training (CBT) design. However, the cognitive processes responsible for learning, from which these principles and guidelines stem from, are only indirectly derived by focusing on cognitive learning outcome differences. Unfortunately, the effects that cognitive processes have on learning are based on the assumption that cognitive learning outcomes are indicative of certain cognitive processes. Such circular reasoning is what prompted this dissertation. Specifically, this dissertation looked at the notion of referential connections, which is a prevalent cognitive process that is thought to support knowledge acquisition in a multimedia CBT environment. Referential connections, and the related cognitive mechanisms supporting them, are responsible for creating associations between verbal and visual information; as a result, their impact on multimedia learning is theorized to be far reaching. Therefore, one of the main goals of this dissertation was to address the issue of indirectly assessing cognitive processes by directly measuring referential connections to (a) verify the presence of referential connections, and (b) to measure the extent to which referential connections affect cognitive learning outcomes. To achieve this goal, a complete review of the prevalent multimedia theories was brought fourth. The most important factors thought to be influencing referential connections were extracted and cataloged into variables that were manipulated, fixed, covaried, or randomized to empirically examine the link between referential connections and learning. Specifically, this dissertation manipulated referential connections by varying the temporal presentation of modalities and the color coding of instructional material. Manipulating the temporal presentation of modalities was achieved by either presenting modalities simultaneously or sequentially. Color coding manipulations capitalized on pre-attentive highlighting and pairing of elements (i.e., pairing text with corresponding visuals). As such, the computer-based training varied color coding on three levels: absence of color coding, color coding without pairing text and corresponding visual aids, and color coding that also paired text and corresponding visual aids. The modalities employed in the experiment were written text and static visual aids, and the computer-based training taught the principles of flight to naive participants. Furthermore, verbal and spatial aptitudes were used as covariates, as they consistently showed to affect learning. Overall, the manipulations were hypothesized to differentially affect referential connections and cognitive learning outcomes, thereby altering cognitive learning outcomes. Specifically, training with simultaneously presented modalities was hypothesized to be superior, in terms of referential connections and learning performance, to a successive presentation, and color coding modalities with pairing of verbal and visual correspondents was hypothesized to be superior to other forms of color coding. Finally, it was also hypothesized that referential connections would positively correlate with cognitive learning outcomes and, indeed, mediate the effects of temporal contiguity and color coding on learning. A total of 96 were randomly assigned to one of the six experimental groups, and were trained on the principles of flight. The key construct of referential connections was successfully measured with three methods. Cognitive learning outcomes were captured by a traditional declarative test and by two integrative (i.e., knowledge application) tests. Results showed that the two multimedia manipulation impacted cognitive learning outcomes and did so through corresponding changes of related referential connections (i.e., through mediation). Specifically, as predicted, referential connections mediated the impact of both temporal contiguity and color coding on lower- and higher-level cognitive learning outcomes. Theoretical and practical implications of the results are discussed in relation to computer-based training design principles and guidelines. Specifically, theoretical implications focus on the contribution that referential connections have on multimedia learning theory, and practical implications are brought forth in terms of instructional design issues. Future research considerations are described as they relate to further exploring the role of referential connections within multimedia CBT paradigms

    Corporate strategy revisited: A view from complexity theory

    Get PDF
    Despite its long tradition and well known contributions, corporate strategy research is yet far from being mature. This paper proposes an innovative framework that approaches the field from the theoretical perspective provided by complexity theory. We propose to see the corporate level of the organization as the driver, pacer and framer of the overall firm's evolution process. Drive is provided by the cognitive representation of the corporate fitness landscape that is implicit in the firm's corporate plan. Pacing is a consequence of the kind of strategic initiatives ("search strategy") developed by the company. Framing is achieved through the architectural design that the corporate level implements for the firm.corporate strategy; complexity theory; self-organizing;

    The State of the Art in Cartograms

    Full text link
    Cartograms combine statistical and geographical information in thematic maps, where areas of geographical regions (e.g., countries, states) are scaled in proportion to some statistic (e.g., population, income). Cartograms make it possible to gain insight into patterns and trends in the world around us and have been very popular visualizations for geo-referenced data for over a century. This work surveys cartogram research in visualization, cartography and geometry, covering a broad spectrum of different cartogram types: from the traditional rectangular and table cartograms, to Dorling and diffusion cartograms. A particular focus is the study of the major cartogram dimensions: statistical accuracy, geographical accuracy, and topological accuracy. We review the history of cartograms, describe the algorithms for generating them, and consider task taxonomies. We also review quantitative and qualitative evaluations, and we use these to arrive at design guidelines and research challenges

    Challenges and prospects of spatial machine learning

    Get PDF
    The main objective of this thesis is to improve the usefulness of spatial machine learning for the spatial sciences and to allow its unused potential to be exploited. To achieve this objective, this thesis addresses several important but distinct challenges which spatial machine learning is facing. These are the modeling of spatial autocorrelation and spatial heterogeneity, the selection of an appropriate model for a given spatial problem, and the understanding of complex spatial machine learning models.Das wesentliche Ziel dieser Arbeit ist es, die NĂŒtzlichkeit des rĂ€umlichen maschinellen Lernens fĂŒr die Raumwissenschaften zu verbessern und es zu ermöglichen, ungenutztes Potenzial auszuschöpfen. Um dieses Ziel zu erreichen, befasst sich diese Arbeit mit mehreren wichtigen Herausforderungen, denen das rĂ€umliche maschinelle Lernen gegenĂŒbersteht. Diese sind die Modellierung von rĂ€umlicher Autokorrelation und rĂ€umlicher HeterogenitĂ€t, die Auswahl eines geeigneten Modells fĂŒr ein gegebenes rĂ€umliches Problem und das VerstĂ€ndnis komplexer rĂ€umlicher maschineller Lernmodelle
    • 

    corecore