386 research outputs found

    Vision-based chicken meat freshness recognition system using RGB color moment features and support vector machine

    Get PDF
    Chicken meat is a highly sought-after food product among various segments of the general population, known for its high nutritional value and easy accessibility. Presently, meat identification is primarily conducted manually, relying on visual inspection or tactile assessment of the meat's color and texture. However, this approach presents several limitations, particularly when consumers lack the discernment to differentiate the quality of chicken meat freshness. This research aims to identify the freshness level of chicken meat using the Support Vector Machine method, employing the extraction of RGB color moment features to determine the freshness of the meat. The feature extraction process involves calculating the percentage of intensity values for R (Red), G (Green), and B (Blue) in each chicken meat image. Based on the image processing results, the percentage of intensity values, particularly in the R and B parameters, can be used as determining factors. The study involves software testing using fresh and non-fresh chicken meat. The developed system can identify the freshness level of fresh chicken meat with an accuracy rate of 71.6% using the linear kernel SVM and 60.5% using the RBF kernel SVM.  This research represents a significant step toward the automation of chicken meat freshness assessment, potentially reducing food waste and enhancing food safety in the food industry. Further research and development could improve the system's accuracy and expand its applications in various food quality control settings.Chicken meat is a highly sought-after food product among various segments of the general population, known for its high nutritional value and easy accessibility. Presently, meat identification is primarily conducted manually, relying on visual inspection or tactile assessment of the meat's color and texture. However, this approach presents several limitations, particularly when consumers lack the discernment to differentiate the quality of chicken meat freshness. This research aims to identify the freshness level of chicken meat using the Support Vector Machine method, employing the extraction of RGB color moment features to determine the freshness of the meat. The feature extraction process involves calculating the percentage of intensity values for R (Red), G (Green), and B (Blue) in each chicken meat image. Based on the image processing results, the percentage of intensity values, particularly in the R and B parameters, can be used as determining factors. The study involves software testing using fresh and non-fresh chicken meat. The developed system can identify the freshness level of fresh chicken meat with an accuracy rate of 71.6% using the linear kernel SVM and 60.5% using the RBF kernel SVM.  This research represents a significant step toward the automation of chicken meat freshness assessment, potentially reducing food waste and enhancing food safety in the food industry. Further research and development could improve the system's accuracy and expand its applications in various food quality control settings

    Sparse multivariate Gaussian mixture regression

    Get PDF
    Fitting a multivariate Gaussian mixture to data represents an attractive, as well as challenging problem, in especial when sparsity in the solution is demanded. Achieving this objective requires the concurrent update of all parameters (weight, centers, and precisions) of all multivariate Gaussian functions during the learning process. Such is the focus of this paper, which presents a novel method founded on the minimization of the error of the generalized logarithmic utility function (GLUF). This choice, which allows us to move smoothly from the mean square error (MSE) criterion to the one based on the logarithmic error, yields an optimization problem that resembles a locally convex problem and can be solved with a quasi-Newton method. The GLUF framework also facilitates the comparative study between both extremes, concluding that the classical MSE optimization is not the most adequate for the task. The performance of the proposed novel technique is demonstrated on simulated as well as realistic scenarios

    ATMSeer: Increasing Transparency and Controllability in Automated Machine Learning

    Full text link
    To relieve the pain of manually selecting machine learning algorithms and tuning hyperparameters, automated machine learning (AutoML) methods have been developed to automatically search for good models. Due to the huge model search space, it is impossible to try all models. Users tend to distrust automatic results and increase the search budget as much as they can, thereby undermining the efficiency of AutoML. To address these issues, we design and implement ATMSeer, an interactive visualization tool that supports users in refining the search space of AutoML and analyzing the results. To guide the design of ATMSeer, we derive a workflow of using AutoML based on interviews with machine learning experts. A multi-granularity visualization is proposed to enable users to monitor the AutoML process, analyze the searched models, and refine the search space in real time. We demonstrate the utility and usability of ATMSeer through two case studies, expert interviews, and a user study with 13 end users.Comment: Published in the ACM Conference on Human Factors in Computing Systems (CHI), 2019, Glasgow, Scotland U

    RĂ©seaux Ă  fonctions de base radiales

    No full text
    18 pagesThis chapter presents the radial basis functions neural networks 5RBF). The approximation problem is posed, and the different approaches for RBF learning are described. Several applications of this model are given

    Experimental Study on 164 Algorithms Available in Software Tools for Solving Standard Non-Linear Regression Problems

    Get PDF
    In the specialized literature, researchers can find a large number of proposals for solving regression problems that come from different research areas. However, researchers tend to use only proposals from the area in which they are experts. This paper analyses the performance of a large number of the available regression algorithms from some of the most known and widely used software tools in order to help non-expert users from other areas to properly solve their own regression problems and to help specialized researchers developing well-founded future proposals by properly comparing and identifying algorithms that will enable them to focus on significant further developments. To sum up, we have analyzed 164 algorithms that come from 14 main different families available in 6 software tools (Neural Networks, Support Vector Machines, Regression Trees, Rule-Based Methods, Stacking, Random Forests, Model trees, Generalized Linear Models, Nearest Neighbor methods, Partial Least Squares and Principal Component Regression, Multivariate Adaptive Regression Splines, Bagging, Boosting, and other methods) over 52 datasets. A new measure has also been proposed to show the goodness of each algorithm with respect to the others. Finally, a statistical analysis by non-parametric tests has been carried out over all the algorithms and on the best 30 algorithms, both with and without bagging. Results show that the algorithms from Random Forest, Model Tree and Support Vector Machine families get the best positions in the rankings obtained by the statistical tests when bagging is not considered. In addition, the use of bagging techniques significantly improves the performance of the algorithms without excessive increase in computational times.This work was supported in part by the University of CĂłrdoba under the project PPG2019-UCOSOCIAL-03, and in part by the Spanish Ministry of Science, Innovation and Universities under Grant TIN2015- 68454-R and Grant TIN2017-89517-P
    • …
    corecore