7 research outputs found

    Assessing Contention Effects on MPI_Alltoall Communications

    Get PDF
    12 pagesInternational audienceOne of the most important collective communication patterns used in scientific applications is the complete exchange, also called All-to-All. Although efficient algorithms have been studied for specific networks, general solutions like those available in well-known MPI distributions (e.g. the MPI_Alltoall operation) are strongly influenced by the congestion of network resources. In this paper we present an integrated approach to model the performance of the All-to-All collective operation, which consists in identifying a contention signature that characterizes a given network environment, using it to augment a contention-free communication model. This approach, assessed by experimental results, allows an accurate prediction of the performance of the All-to-All operation over different network architectures with a small overhead

    Parallel architectures and runtime systems co-design for task-based programming models

    Get PDF
    The increasing parallelism levels in modern computing systems has extolled the need for a holistic vision when designing multiprocessor architectures taking in account the needs of the programming models and applications. Nowadays, system design consists of several layers on top of each other from the architecture up to the application software. Although this design allows to do a separation of concerns where it is possible to independently change layers due to a well-known interface between them, it is hampering future systems design as the Law of Moore reaches to an end. Current performance improvements on computer architecture are driven by the shrinkage of the transistor channel width, allowing faster and more power efficient chips to be made. However, technology is reaching physical limitations were the transistor size will not be able to be reduced furthermore and requires a change of paradigm in systems design. This thesis proposes to break this layered design, and advocates for a system where the architecture and the programming model runtime system are able to exchange information towards a common goal, improve performance and reduce power consumption. By making the architecture aware of runtime information such as a Task Dependency Graph (TDG) in the case of dataflow task-based programming models, it is possible to improve power consumption by exploiting the critical path of the graph. Moreover, the architecture can provide hardware support to create such a graph in order to reduce the runtime overheads and making possible the execution of fine-grained tasks to increase the available parallelism. Finally, the current status of inter-node communication primitives can be exposed to the runtime system in order to perform a more efficient communication scheduling, and also creates new opportunities of computation and communication overlap that were not possible before. An evaluation of the proposals introduced in this thesis is provided and a methodology to simulate and characterize the application behavior is also presented.El aumento del paralelismo proporcionado por los sistemas de cómputo modernos ha provocado la necesidad de una visión holística en el diseño de arquitecturas multiprocesador que tome en cuenta las necesidades de los modelos de programación y las aplicaciones. Hoy en día el diseño de los computadores consiste en diferentes capas de abstracción con una interfaz bien definida entre ellas. Las limitaciones de esta aproximación junto con el fin de la ley de Moore limitan el potencial de los futuros computadores. La mayoría de las mejoras actuales en el diseño de los computadores provienen fundamentalmente de la reducción del tamaño del canal del transistor, lo cual permite chips más rápidos y con un consumo eficiente sin apenas cambios fundamentales en el diseño de la arquitectura. Sin embargo, la tecnología actual está alcanzando limitaciones físicas donde no será posible reducir el tamaño de los transistores motivando así un cambio de paradigma en la construcción de los computadores. Esta tesis propone romper este diseño en capas y abogar por un sistema donde la arquitectura y el sistema de tiempo de ejecución del modelo de programación sean capaces de intercambiar información para alcanzar una meta común: La mejora del rendimiento y la reducción del consumo energético. Haciendo que la arquitectura sea consciente de la información disponible en el modelo de programación, como puede ser el grafo de dependencias entre tareas en los modelos de programación dataflow, es posible reducir el consumo energético explotando el camino critico del grafo. Además, la arquitectura puede proveer de soporte hardware para crear este grafo con el objetivo de reducir el overhead de construir este grado cuando la granularidad de las tareas es demasiado fina. Finalmente, el estado de las comunicaciones entre nodos puede ser expuesto al sistema de tiempo de ejecución para realizar una mejor planificación de las comunicaciones y creando nuevas oportunidades de solapamiento entre cómputo y comunicación que no eran posibles anteriormente. Esta tesis aporta una evaluación de todas estas propuestas, así como una metodología para simular y caracterizar el comportamiento de las aplicacionesPostprint (published version

    Simulation of MPI applications with time-independent traces

    Get PDF
    International audienceAnalyzing and understanding the performance behavior of parallel applications on parallel computing platforms is a long-standing concern in the High Performance Computing community. When the targeted platforms are not available , simulation is a reasonable approach to obtain objective performance indicators and explore various hypothetical scenarios. In the context of applications implemented with the Message Passing Interface, two simulation methods have been proposed, on-line simulation and off-line simulation, both with their own drawbacks and advantages. In this work we present an off-line simulation framework, i.e., one that simulates the execution of an application based on event traces obtained from an actual execution. The main novelty of this work, when compared to previously proposed off-line simulators, is that traces that drive the simulation can be acquired on large, distributed, heterogeneous , and non-dedicated platforms. As a result the scalability of trace acquisition is increased, which is achieved by enforcing that traces contain no time-related information. Moreover, our framework is based on an state-of-the-art scalable, fast, and validated simulation kernel. We introduce the notion of performing off-line simulation from time-independent traces, propose and evaluate several trace acquisition strategies, describe our simulation framework, and assess its quality in terms of trace acquisition scalability, simulation accuracy, and simulation time

    An empirical evaluation of techniques for parallel simulation of message passing networks

    Get PDF
    209 p.[EN]In the field of computer design, simulation is an essential tool to validate and evaluate architectural proposals. Conventional simulation techniques, designed for their use in sequential computers, are too slow if the system to simulate is large or complex. The aim of this work is to search for techniques to accelerate simulations exploiting the parallelism available in current, commercial multicomputers, and to use these techniques to study a model of a message router. This router has been designed to constitute the communication infrastructure of a (hypothetical) massively parallel computer. Three parallel simulation techniques have been considered: synchronous, asynchronous-conservative and asynchronous-optimistic. These algorithms have been implemented in three multicomputers: a transputer-based Supernode, an Intel Paragon and a network of workstations. The influence that factors such as the characteristics of the simulated models, the organization of the simulators and the characteristics of the target multicomputers have in the performance of the simulations has been measured and characterized. It is concluded that optimistic parallel simulation techniques are not suitable for the considered kind of models, although they may provide good performance in other environments. A network of workstations is not the right platform for our experiments, because the communication demands of the parallel simulators surpass the abilities of local area networks—the granularity is too fine. Synchronous and conservative parallel simulation techniques perform very well in the Supernode and in the Paragon, specially if the model to simulate is complex or large—precisely the worst case for traditional, sequential simulators. This way, studies previously considered as unrealizable, due to their exceedingly high computational cost, can be performed in reasonable times. Additionally, the spectrum of possibilities of using multicomputers can be broadened to execute more than numeric applications.[ES]En el ámbito del diseño de computadores, la simulación es una herramienta imprescindible para la validación y evaluación de cualquier propuesta arquitectónica. Las ténicas convencionales de simulación, diseñadas para su utilización en computadores secuenciales, son demasiado lentas si el sistema a simular es grande o complejo. El objetivo de esta tesis es buscar técnicas para acelerar estas simulaciones, aprovechando el paralelismo disponible en multicomputadores comerciales, y usar esas técnicas para el estudio de un modelo de encaminador de mensajes. Este encaminador está diseñado para formar infraestructura de comunicaciones de un hipotético computador masivamente paralelo. En este trabajo se consideran tres técnicas de simulación paralela: síncrona, asíncrona-conservadora y asíncrona-optimista. Estos algoritmos se han implementado en tres multicomputadores: un Supernode basado en Transputers, un Intel Paragon y una red de estaciones de trabajo. Se caracteriza la influencia que tienen en las prestaciones de los simuladores aspectos tales como los parámetros del modelo simulado, la organización del simulador y las características del multicomputador utilizado. Se concluye que las técnicas de simulación paralela optimista no resultan adecuadas para trabajar con el modelo considerado, aunque pueden ofrecer un buen rendimiento en otros entornos. La red de estaciones de trabajo no resulta una plataforma apropiada para estas simulaciones, ya que una red local no reúne condiciones para la ejecución de aplicaciones paralelas de grano fino. Las técnicas de simulación paralela síncrona y conservadora dan muy buenos resultados en el Supernode y en el Paragon, especialmente si el modelo a simular es complejo o grande—precisamente el peor caso para los algoritmos secuenciales. De esta forma, estudios previamente considerados inviables, por ser demasiado costosos computacionalmente, pueden realizarse en tiempos razonables. Además, se amplía el espectro de posibilidades de los multicomputadores, utilizándolos para algo más que aplicaciones numéricas.Este trabajo ha sido parcialmente subvencionado por la Comisión Interministerial de Ciencia y Tecnología, bajo contrato TIC95-037

    Towards instantaneous performance analysis using coarse-grain sampled and instrumented data

    Get PDF
    Nowadays, supercomputers deliver an enormous amount of computation power; however, it is well-known that applications only reach a fraction of it. One limiting factor is the single processor performance because it ultimately dictates the overall achieved performance. Performance analysis tools help locating performance inefficiencies and their nature to ultimately improve the application performance. Performance tools rely on two collection techniques to invoke their performance monitors: instrumentation and sampling. Instrumentation refers to inject performance monitors into concrete application locations whereas sampling invokes the installed monitors to external events. Each technique has its advantages. The measurements obtained through instrumentation are directly associated to the application structure while sampling allows a simple way to determine the volume of measurements captured. However, the granularity of the measurements that provides valuable insight cannot be determined a priori. Should analysts study the performance of an application for the first time, they may consider using a performance tool and instrument every routine or use high-frequency sampling rates to provide the most detailed results. These approaches frequently lead to large overheads that impact the application performance and thus alter the measurements gathered and, therefore, mislead the analyst. This thesis introduces the folding mechanism that takes advantage of the repetitiveness found in many applications. The mechanism smartly combines metrics captured through coarse-grain sampling and instrumentation mechanisms to provide instantaneous metric reports within instrumented regions and without perturbing the application execution. To produce these reports, the folding processes metrics from different type of sources: performance and energy counters, source code and memory references. The process depends on their nature. While performance and energy counters represent continuous metrics, the source code and memory references refer to discrete values that point out locations within the application code or address space. This thesis evaluates and validates two fitting algorithms used in different areas to report continuous metrics: a Gaussian interpolation process known as Kriging and piece-wise linear regressions. The folding also takes benefit of analytical performance models to focus on a small set of performance metrics instead of exploring a myriad of performance counters. The folding also correlates the metrics with the source-code using two alternatives: using the outcome of the piece-wise linear regressions and a mechanism inspired by Multi-Sequence Alignment techniques. Finally, this thesis explores the applicability of the folding mechanism to captured memory references to detail which and how data objects are accessed. This thesis proposes an analysis methodology for parallel applications that focus on describing the most time-consuming computing regions. It is implemented on top of a framework that relies on a previously existing clustering tool and the folding mechanism. To show the usefulness of the methodology and the framework, this thesis includes the discussion of multiple first-time seen in-production applications. The discussions include high level of detail regarding the application performance bottlenecks and their responsible code. Despite many analyzed applications have been compiled using aggressive compiler optimization flags, the insight obtained from the folding mechanism has turned into small code transformations based on widely-known optimization techniques that have improved the performance in some cases. Additionally, this work also depicts power monitoring capabilities of recent processors and discusses the simultaneous performance and energy behavior on a selection of benchmarks and in-production applications.Actualment, els supercomputadors ofereixen una àmplia potència de càlcul però les aplicacions només en fan servir una petita fracció. Un dels factors limitants és el rendiment d'un processador, el qual dicta el rendiment en general. Les eines d'anàlisi de rendiment ajuden a localitzar els colls d'ampolla i la seva natura per a, eventualment, millorar el rendiment de l'aplicació. Les eines d'anàlisi de rendiment empren dues tècniques de recol·lecció de dades: instrumentació i mostreig. La instrumentació es refereix a la capacitat d'injectar monitors en llocs específics del codi mentre que el mostreig invoca els monitors quan ocórren esdeveniments externs. Cadascuna d'aquestes tècniques té les seves avantatges. Les mesures obtingudes per instrumentació s'associen directament a l'estructura de l'aplicació mentre que les obtingudes per mostreig permeten una forma senzilla de determinar-ne el volum capturat. Sigui com sigui, la granularitat de les mesures no es pot determinar a priori. Conseqüentment, si un analista vol estudiar el rendiment d'una aplicació sense saber-ne res, hauria de considerar emprar una eina d'anàlisi i instrumentar cadascuna de les rutines o bé emprar freqüències de mostreig altes per a proveir resultats detallats. En qualsevol cas, aquestes alternatives impacten en el rendiment de l'aplicació i per tant alterar les mètriques capturades, i conseqüentment, confondre a l'analista. Aquesta tesi introdueix el mecanisme anomenat folding, el qual aprofita la repetitibilitat existent en moltes aplicacions. El mecanisme combina intel·ligentment mètriques obtingudes mitjançant mostreig de gra gruixut i instrumentació per a proveir informes de mètriques instantànies dins de regions instrumentades sense pertorbar-ne l'execució. Per a produir aquests informes, el mecanisme processa les mètriques de diferents fonts: comptadors de rendiment i energia, codi font i referències de memoria. El procés depen de la natura de les dades. Mentre que les mètriques de rendiment i energia són valors continus, el codi font i les referències de memòria representen valors discrets que apunten ubicacions dins el codi font o l'espai d'adreces. Aquesta tesi evalua i valida dos algorismes d'ajust: un procés d'interpolació anomenat Kriging i una interpolació basada en regressions lineals segmentades. El mecanisme de folding també s'aprofita de models analítics de rendiment basats en comptadors hardware per a proveir un conjunt reduït de mètriques enlloc d'haver d'explorar una multitud de comptadors. El mecanisme també correlaciona les mètriques amb el codi font emprant dues alternatives: per un costat s'aprofita dels resultats obtinguts per les regressions lineals segmentades i per l'altre defineix un mecanisme basat en tècniques d'alineament de multiples seqüències. Aquesta tesi també explora l'aplicabilitat del mecanisme per a referències de memoria per a informar quines i com s'accessedeixen les dades de l'aplicació. Aquesta tesi proposa una metodología d'anàlisi per a aplicacions paral·leles centrant-se en descriure les regions de càlcul que consumeixen més temps. La metodología s'implementa en un entorn de treball que usa un mecanisme de clustering preexistent i el mecanisme de folding. Per a demostrar-ne la seva utilitat, aquesta tesi inclou la discussió de múltiples aplicacions analitzades per primera vegada. Les discussions inclouen un alt nivel de detall en referencia als colls d'ampolla de les aplicacions i de la seva natura. Tot i que moltes d'aquestes aplicacions s'han compilat amb opcions d'optimització agressives, la informació obtinguda per l'entorn de treball es tradueix en petites modificacions basades en tècniques d'optimització que permeten millorar-ne el rendiment en alguns casos. Addicionalment, aquesta tesi també reporta informació sobre el consum energètic reportat per processadors recents i discuteix el comportament simultani d'energia i rendiment en una selecció d'aplicacions sintètiques i aplicacions en producció

    Acceleration of the hardware-software interface of a communication device for parallel systems

    Full text link
    During the last decades the ever growing need for computational power fostered the development of parallel computer architectures. Applications need to be parallelized and optimized to be able to exploit modern system architectures. Today, scalability of applications is more and more limited both by development resources, as programming of complex parallel applications becomes increasingly demanding, and by the fundamental scalability issues introduced by the cost of communication in distributed memory systems. Lowering the latency of communication is mandatory to increase scalability and serves as an enabling technology for programming of distributed memory systems at a higher abstraction layer using higher degrees of compiler driven automation. At the same time it can increase performance of such systems in general. In this work, the software/hardware interface and the network interface controller functions of the EXTOLL network architecture, which is specifically designed to satisfy the needs of low-latency networking for high-performance computing, is presented. Several new architectural contributions are made in this thesis, namely a new efficient method for virtual-tophysical address-translation named ATU and a novel method to issue operations to a virtual device in an optimal way which has been termed Transactional I/O. This new method needs changes in the architecture of the host CPU the device is connected to. Two additional methods that emulate most of the characteristics of Transactional I/O are developed and employed in the development of the EXTOLL hardware to facilitate usage together with contemporary CPUs. These new methods heavily leverage properties of the HyperTransport interface used to connect the device to the CPU. Finally, this thesis also introduces an optimized remote-memory-access architecture for efficient split-phase transactions and atomic operations. The complete architecture has been prototyped using FPGA technology enabling a more precise analysis and verification than is possible using simulation alone. The resulting design utilizes 95 % of a 90 nm FPGA device and reaches speeds of 200 MHz and 156 MHz in the different clock domains of the design. The EXTOLL software stack is developed and a performance evaluation of the software using the EXTOLL hardware is performed. The performance evaluation shows an excellent start-up latency value of 1.3 μs, which competes with the most advanced networks available, in spite of the technological performance handicap encountered by FPGA technology. The resulting network is, to the best of the knowledge of the author, the fastest FPGA-based interconnection network for commodity processors ever built
    corecore