434 research outputs found

    Challenges and opportunities in understanding microbial communities with metagenome assembly (accompanied by IPython Notebook tutorial)

    Get PDF
    Metagenomic investigations hold great promise for informing the genetics, physiology, and ecology of environmental microorganisms. Current challenges for metagenomic analysis are related to our ability to connect the dots between sequencing reads, their population of origin, and their encoding functions. Assembly-based methods reduce dataset size by extending overlapping reads into larger contiguous sequences (contigs), providing contextual information for genetic sequences that does not rely on existing references. These methods, however, tend to be computationally intensive and are again challenged by sequencing errors as well as by genomic repeats While numerous tools have been developed based on these methodological concepts, they present confounding choices and training requirements to metagenomic investigators. To help with accessibility to assembly tools, this review also includes an IPython Notebook metagenomic assembly tutorial. This tutorial has instructions for execution any operating system using Amazon Elastic Cloud Compute and guides users through downloading, assembly, and mapping reads to contigs of a mock microbiome metagenome. Despite its challenges, metagenomic analysis has already revealed novel insights into many environments on Earth. As software, training, and data continue to emerge, metagenomic data access and its discoveries will to grow

    Permanent Draft Genome Sequences for Mesorhizobium sp. Strains LCM 4576, LCM 4577, and ORS3428, Salt-Tolerant, Nitrogen-Fixing Bacteria Isolated from Senegalese Soils

    Get PDF
    The genus Mesorhizobium contains many species that are able to form nitrogen-fixing nodules on plants of the legume family. Here, we report the draft genome sequences for three Mesorhizobium strains. The genome sizes of strains LCM 4576, LCM 4577, and ORS3428 were 7.24, 7.02, and 6.55 Mbp, respectively

    Assembling the microbial dark matter

    Get PDF
    Bremges A. Assembling the microbial dark matter. Bielefeld: Universität Bielefeld; 2016.The vast majority of microbial species found in nature has yet to be grown in pure culture, turning metagenomics and – more recently – single cell genomics into indispensable methods to study the microbial dark matter. I developed, applied, and benchmarked genome assembly protocols for single cell and metagenome sequencing data to access microbial dark matter genomes. In the first part of my thesis, I propose new algorithms that naturally exploit the complementary nature of single cells and metagenomes to improve the quality of single cell assemblies. In the second part, I apply advanced metagenome assembly and binning techniques to untangle genomes from metagenomes, eventually reconstructing hundreds of near-complete genomes of process-relevant community members in the biogas microbiome

    The Parallelism Motifs of Genomic Data Analysis

    Get PDF
    Genomic data sets are growing dramatically as the cost of sequencing continues to decline and small sequencing devices become available. Enormous community databases store and share this data with the research community, but some of these genomic data analysis problems require large scale computational platforms to meet both the memory and computational requirements. These applications differ from scientific simulations that dominate the workload on high end parallel systems today and place different requirements on programming support, software libraries, and parallel architectural design. For example, they involve irregular communication patterns such as asynchronous updates to shared data structures. We consider several problems in high performance genomics analysis, including alignment, profiling, clustering, and assembly for both single genomes and metagenomes. We identify some of the common computational patterns or motifs that help inform parallelization strategies and compare our motifs to some of the established lists, arguing that at least two key patterns, sorting and hashing, are missing

    Microbial Communities of Cladonia Lichens and Their Biosynthetic Gene Clusters Potentially Encoding Natural Products

    Get PDF
    Lichens have been widely used in traditional medicine, especially by indigenous communities worldwide. However, their slow growth and difficulties in the isolation of lichen symbionts and associated microbes have hindered the pharmaceutical utilisation of lichen-produced compounds. Advances in high-throughput sequencing techniques now permit detailed investigations of the complex microbial communities formed by fungi, green algae, cyanobacteria, and other bacteria within the lichen thalli. Here, we used amplicon sequencing, shotgun metagenomics, and in silico metabolomics together with compound extractions to study reindeer lichens collected from Southern Finland. Our aim was to evaluate the potential of Cladonia species as sources of novel natural products. We compared the predicted biosynthetic pathways of lichen compounds from isolated genome-sequenced lichen fungi and our environmental samples. Potential biosynthetic genes could then be further used to produce secondary metabolites in more tractable hosts. Furthermore, we detected multiple compounds by metabolite analyses, which revealed connections between the identified biosynthetic gene clusters and their products. Taken together, our results contribute to metagenomic data studies from complex lichen-symbiotic communities and provide valuable new information for use in further biochemical and pharmacological studies

    Microbial Communities of Cladonia Lichens and Their Biosynthetic Gene Clusters Potentially Encoding Natural Products

    Get PDF
    Lichens have been widely used in traditional medicine, especially by indigenous communities worldwide. However, their slow growth and difficulties in the isolation of lichen symbionts and associated microbes have hindered the pharmaceutical utilisation of lichen-produced compounds. Advances in high-throughput sequencing techniques now permit detailed investigations of the complex microbial communities formed by fungi, green algae, cyanobacteria, and other bacteria within the lichen thalli. Here, we used amplicon sequencing, shotgun metagenomics, and in silico metabolomics together with compound extractions to study reindeer lichens collected from Southern Finland. Our aim was to evaluate the potential of Cladonia species as sources of novel natural products. We compared the predicted biosynthetic pathways of lichen compounds from isolated genome-sequenced lichen fungi and our environmental samples. Potential biosynthetic genes could then be further used to produce secondary metabolites in more tractable hosts. Furthermore, we detected multiple compounds by metabolite analyses, which revealed connections between the identified biosynthetic gene clusters and their products. Taken together, our results contribute to metagenomic data studies from complex lichen-symbiotic communities and provide valuable new information for use in further biochemical and pharmacological studies
    • …
    corecore