24,729 research outputs found

    Sonification, Musification, and Synthesis of Absolute Program Music

    Get PDF
    Presented at the 22nd International Conference on Auditory Display (ICAD-2016)When understood as a communication system, a musical work can be interpreted as data existing within three domains. In this interpretation an absolute domain is interposed as a communication channel between two programatic domains that act respectively as source and receiver. As a source, a programatic domain creates, evolves, organizes, and represents a musical work. When acting as a receiver it re-constitutes acoustic signals into unique auditory experience. The absolute domain transmits physical vibrations ranging from the stochastic structures of noise to the periodic waveforms of organized sound. Analysis of acoustic signals suggest recognition as a musical work requires signal periodicity to exceed some minimum. A methodological framework that satisfies recent definitions of sonification is outlined. This framework is proposed to extend to musification through incorporation of data features that represent more traditional elements of a musical work such as melody, harmony, and rhythm

    Nonparametric estimation of the dynamic range of music signals

    Full text link
    The dynamic range is an important parameter which measures the spread of sound power, and for music signals it is a measure of recording quality. There are various descriptive measures of sound power, none of which has strong statistical foundations. We start from a nonparametric model for sound waves where an additive stochastic term has the role to catch transient energy. This component is recovered by a simple rate-optimal kernel estimator that requires a single data-driven tuning. The distribution of its variance is approximated by a consistent random subsampling method that is able to cope with the massive size of the typical dataset. Based on the latter, we propose a statistic, and an estimation method that is able to represent the dynamic range concept consistently. The behavior of the statistic is assessed based on a large numerical experiment where we simulate dynamic compression on a selection of real music signals. Application of the method to real data also shows how the proposed method can predict subjective experts' opinions about the hifi quality of a recording

    A Three-Dimensional Code for Muon Propagation through the Rock: MUSIC

    Get PDF
    We present a new three-dimensional Monte-Carlo code MUSIC (MUon SImulation Code) for muon propagation through the rock. All processes of muon interaction with matter with high energy loss (including the knock-on electron production) are treated as stochastic processes. The angular deviation and lateral displacement of muons due to multiple scattering, as well as bremsstrahlung, pair production and inelastic scattering are taken into account. The code has been applied to obtain the energy distribution and angular and lateral deviations of single muons at different depths underground. The muon multiplicity distributions obtained with MUSIC and CORSIKA (Extensive Air Shower simulation code) are also presented. We discuss the systematic uncertainties of the results due to different muon bremsstrahlung cross-sections.Comment: 24 pages, 11 Postscript figures, LaTeX, to be published in Astroparticle Physic

    Towards musical interaction : 'Schismatics' for e-violin and computer.

    Get PDF
    This paper discusses the evolution of the Max/MSP patch used in schismatics (2007, rev. 2010) for electric violin (Violectra) and computer, by composer Sam Hayden in collaboration with violinist Mieko Kanno. schismatics involves a standard performance paradigm of a fixed notated part for the e-violin with sonically unfixed live computer processing. Hayden was unsatisfied with the early version of the piece: the use of attack detection on the live e-violin playing to trigger stochastic processes led to an essentially reactive behaviour in the computer, resulting in a somewhat predictable one-toone sonic relationship between them. It demonstrated little internal relationship between the two beyond an initial e-violin ‘action’ causing a computer ‘event’. The revisions in 2010, enabled by an AHRC Practice-Led research award, aimed to achieve 1) a more interactive performance situation and 2) a subtler and more ‘musical’ relationship between live and processed sounds. This was realised through the introduction of sound analysis objects, in particular machine listening and learning techniques developed by Nick Collins. One aspect of the programming was the mapping of analysis data to synthesis parameters, enabling the computer transformations of the e-violin to be directly related to Kanno’s interpretation of the piece in performance

    The Art of Engaging: Implications for Computer Music Systems

    Get PDF
    The art of engaging with computer music systems is multifaceted. This paper will provide an overview of the issues of interface between musician and computer, cognitive aspects of engagement as involvement, and metaphysical understandings of engagement as proximity. Finally, this paper will examine implications for the design of computer music systems when these issues are taken into account
    • …
    corecore