14,601 research outputs found

    The KELT-South Telescope

    Full text link
    The Kilodegree Extremely Little Telescope (KELT) project is a survey for new transiting planets around bright stars. KELT-South is a small-aperture, wide-field automated telescope located at Sutherland, South Africa. The telescope surveys a set of 26 degree by 26 degree fields around the southern sky, and targets stars in the range of 8 < V < 10 mag, searching for transits by Hot Jupiters. This paper describes the KELT-South system hardware and software and discusses the quality of the observations. We show that KELT-South is able to achieve the necessary photometric precision to detect transits of Hot Jupiters around solar-type main-sequence stars.Comment: 26 pages, 13 figure

    The Australian Space Eye: studying the history of galaxy formation with a CubeSat

    Full text link
    The Australian Space Eye is a proposed astronomical telescope based on a 6U CubeSat platform. The Space Eye will exploit the low level of systematic errors achievable with a small space based telescope to enable high accuracy measurements of the optical extragalactic background light and low surface brightness emission around nearby galaxies. This project is also a demonstrator for several technologies with general applicability to astronomical observations from nanosatellites. Space Eye is based around a 90 mm aperture clear aperture all refractive telescope for broadband wide field imaging in the i and z bands.Comment: 19 pages, 14 figures, submitted for publication as Proc. SPIE 9904, 9904-56 (SPIE Astronomical Telescopes & Instrumentation 2016

    The Data Big Bang and the Expanding Digital Universe: High-Dimensional, Complex and Massive Data Sets in an Inflationary Epoch

    Get PDF
    Recent and forthcoming advances in instrumentation, and giant new surveys, are creating astronomical data sets that are not amenable to the methods of analysis familiar to astronomers. Traditional methods are often inadequate not merely because of the size in bytes of the data sets, but also because of the complexity of modern data sets. Mathematical limitations of familiar algorithms and techniques in dealing with such data sets create a critical need for new paradigms for the representation, analysis and scientific visualization (as opposed to illustrative visualization) of heterogeneous, multiresolution data across application domains. Some of the problems presented by the new data sets have been addressed by other disciplines such as applied mathematics, statistics and machine learning and have been utilized by other sciences such as space-based geosciences. Unfortunately, valuable results pertaining to these problems are mostly to be found only in publications outside of astronomy. Here we offer brief overviews of a number of concepts, techniques and developments, some "old" and some new. These are generally unknown to most of the astronomical community, but are vital to the analysis and visualization of complex datasets and images. In order for astronomers to take advantage of the richness and complexity of the new era of data, and to be able to identify, adopt, and apply new solutions, the astronomical community needs a certain degree of awareness and understanding of the new concepts. One of the goals of this paper is to help bridge the gap between applied mathematics, artificial intelligence and computer science on the one side and astronomy on the other.Comment: 24 pages, 8 Figures, 1 Table. Accepted for publication: "Advances in Astronomy, special issue "Robotic Astronomy

    Data Driven Discovery in Astrophysics

    Get PDF
    We review some aspects of the current state of data-intensive astronomy, its methods, and some outstanding data analysis challenges. Astronomy is at the forefront of "big data" science, with exponentially growing data volumes and data rates, and an ever-increasing complexity, now entering the Petascale regime. Telescopes and observatories from both ground and space, covering a full range of wavelengths, feed the data via processing pipelines into dedicated archives, where they can be accessed for scientific analysis. Most of the large archives are connected through the Virtual Observatory framework, that provides interoperability standards and services, and effectively constitutes a global data grid of astronomy. Making discoveries in this overabundance of data requires applications of novel, machine learning tools. We describe some of the recent examples of such applications.Comment: Keynote talk in the proceedings of ESA-ESRIN Conference: Big Data from Space 2014, Frascati, Italy, November 12-14, 2014, 8 pages, 2 figure

    Utilizing Astroinformatics to Maximize the Science Return of the Next Generation Virgo Cluster Survey

    Full text link
    The Next Generation Virgo Cluster Survey is a 104 square degree survey of the Virgo Cluster, carried out using the MegaPrime camera of the Canada-France-Hawaii telescope, from semesters 2009A-2012A. The survey will provide coverage of this nearby dense environment in the universe to unprecedented depth, providing profound insights into galaxy formation and evolution, including definitive measurements of the properties of galaxies in a dense environment in the local universe, such as the luminosity function. The limiting magnitude of the survey is g_AB = 25.7 (10 sigma point source), and the 2 sigma surface brightness limit is g_AB ~ 29 mag arcsec^-2. The data volume of the survey (approximately 50 terabytes of images), while large by contemporary astronomical standards, is not intractable. This renders the survey amenable to the methods of astroinformatics. The enormous dynamic range of objects, from the giant elliptical galaxy M87 at M(B) = -21.6, to the faintest dwarf ellipticals at M(B) ~ -6, combined with photometry in 5 broad bands (u* g' r' i' z'), and unprecedented depth revealing many previously unseen structures, creates new challenges in object detection and classification. We present results from ongoing work on the survey, including photometric redshifts, Virgo cluster membership, and the implementation of fast data mining algorithms on the infrastructure of the Canadian Astronomy Data Centre, as part of the Canadian Advanced Network for Astronomical Research (CANFAR).Comment: 8 pages, 2 figures. Accepted for the Joint Workshop and Summer School: Astrostatistics and Data Mining in Large Astronomical Databases, La Palma, May 30th - June 3rd 2011. A higher resolution version is available at http://sites.google.com/site/nickballastronomer/publication

    Spectroscopic Analysis in the Virtual Observatory Environment with SPLAT-VO

    Full text link
    SPLAT-VO is a powerful graphical tool for displaying, comparing, modifying and analyzing astronomical spectra, as well as searching and retrieving spectra from services around the world using Virtual Observatory (VO) protocols and services. The development of SPLAT-VO started in 1999, as part of the Starlink StarJava initiative, sometime before that of the VO, so initial support for the VO was necessarily added once VO standards and services became available. Further developments were supported by the Joint Astronomy Centre, Hawaii until 2009. Since end of 2011 development of SPLAT-VO has been continued by the German Astrophysical Virtual Observatory, and the Astronomical Institute of the Academy of Sciences of the Czech Republic. From this time several new features have been added, including support for the latest VO protocols, along with new visualization and spectra storing capabilities. This paper presents the history of SPLAT-VO, it's capabilities, recent additions and future plans, as well as a discussion on the motivations and lessons learned up to now.Comment: 15 pages, 6 figures, accepted for publication in Astronomy & Computin
    corecore