1,359 research outputs found

    VFH+ based shared control for remotely operated mobile robots

    Full text link
    This paper addresses the problem of safe and efficient navigation in remotely controlled robots operating in hazardous and unstructured environments; or conducting other remote robotic tasks. A shared control method is presented which blends the commands from a VFH+ obstacle avoidance navigation module with the teleoperation commands provided by an operator via a joypad. The presented approach offers several advantages such as flexibility allowing for a straightforward adaptation of the controller's behaviour and easy integration with variable autonomy systems; as well as the ability to cope with dynamic environments. The advantages of the presented controller are demonstrated by an experimental evaluation in a disaster response scenario. More specifically, presented evidence show a clear performance increase in terms of safety and task completion time compared to a pure teleoperation approach, as well as an ability to cope with previously unobserved obstacles.Comment: 8 pages,6 figure

    Teleoperating a mobile manipulator and a free-flying camera from a single haptic device

    Get PDF
    © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksThe paper presents a novel teleoperation system that allows the simultaneous and continuous command of a ground mobile manipulator and a free flying camera, implemented using an UAV, from which the operator can monitor the task execution in real-time. The proposed decoupled position and orientation workspace mapping allows the teleoperation from a single haptic device with bounded workspace of a complex robot with unbounded workspace. When the operator is reaching the position and orientation boundaries of the haptic workspace, linear and angular velocity components are respectively added to the inputs of the mobile manipulator and the flying camera. A user study on a virtual environment has been conducted to evaluate the performance and the workload on the user before and after proper training. Analysis on the data shows that the system complexity is not an obstacle for an efficient performance. This is a first step towards the implementation of a teleoperation system with a real mobile manipulator and a low-cost quadrotor as the free-flying camera.Accepted versio

    3D locomotion biomimetic robot fish with haptic feedback

    Full text link
    This thesis developed a biomimetic robot fish and built a novel haptic robot fish system based on the kinematic modelling and three-dimentional computational fluid dynamic (CFD) hydrodynamic analysis. The most important contribution is the successful CFD simulation of the robot fish, supporting users in understanding the hydrodynamic properties around it

    The use of modern tools for modelling and simulation of UAV with Haptic

    Get PDF
    Unmanned Aerial Vehicle (UAV) is a research field in robotics which is in high demand in recent years, although there still exist many unanswered questions. In contrast, to the human operated aerial vehicles, it is still far less used to the fact that people are dubious about flying in or flying an unmanned vehicle. It is all about giving the control right to the computer (which is the Artificial Intelligence) for making decisions based on the situation like human do but this has not been easy to make people understand that it’s safe and to continue the enhancement on it. These days there are many types of UAVs available in the market for consumer use, for applications like photography to play games, to map routes, to monitor buildings, for security purposes and much more. Plus, these UAVs are also being widely used by the military for surveillance and for security reasons. One of the most commonly used consumer product is a quadcopter or quadrotor. The research carried out used modern tools (i.e., SolidWorks, Java Net Beans and MATLAB/Simulink) to model controls system for Quadcopter UAV with haptic control system to control the quadcopter in a virtual simulation environment and in real time environment. A mathematical model for the controlling the quadcopter in simulations and real time environments were introduced. Where, the design methodology for the quadcopter was defined. This methodology was then enhanced to develop a virtual simulation and real time environments for simulations and experiments. Furthermore, the haptic control was then implemented with designed control system to control the quadcopter in virtual simulation and real time experiments. By using the mathematical model of quadcopter, PID & PD control techniques were used to model the control setup for the quadcopter altitude and motion controls as work progressed. Firstly, the dynamic model is developed using a simple set of equations which evolves further by using complex control & mathematical model with precise function of actuators and aerodynamic coefficients Figure5-7. The presented results are satisfying and shows that flight experiments and simulations of the quadcopter control using haptics is a novel area of research which helps perform operations more successfully and give more control to the operator when operating in difficult environments. By using haptic accidents can be minimised and the functional performance of the operator and the UAV will be significantly enhanced. This concept and area of research of haptic control can be further developed accordingly to the needs of specific applications

    The use of modern tools for modelling and simulation of UAV with Haptic

    Get PDF
    Unmanned Aerial Vehicle (UAV) is a research field in robotics which is in high demand in recent years, although there still exist many unanswered questions. In contrast, to the human operated aerial vehicles, it is still far less used to the fact that people are dubious about flying in or flying an unmanned vehicle. It is all about giving the control right to the computer (which is the Artificial Intelligence) for making decisions based on the situation like human do but this has not been easy to make people understand that it’s safe and to continue the enhancement on it. These days there are many types of UAVs available in the market for consumer use, for applications like photography to play games, to map routes, to monitor buildings, for security purposes and much more. Plus, these UAVs are also being widely used by the military for surveillance and for security reasons. One of the most commonly used consumer product is a quadcopter or quadrotor. The research carried out used modern tools (i.e., SolidWorks, Java Net Beans and MATLAB/Simulink) to model controls system for Quadcopter UAV with haptic control system to control the quadcopter in a virtual simulation environment and in real time environment. A mathematical model for the controlling the quadcopter in simulations and real time environments were introduced. Where, the design methodology for the quadcopter was defined. This methodology was then enhanced to develop a virtual simulation and real time environments for simulations and experiments. Furthermore, the haptic control was then implemented with designed control system to control the quadcopter in virtual simulation and real time experiments. By using the mathematical model of quadcopter, PID & PD control techniques were used to model the control setup for the quadcopter altitude and motion controls as work progressed. Firstly, the dynamic model is developed using a simple set of equations which evolves further by using complex control & mathematical model with precise function of actuators and aerodynamic coefficients Figure5-7. The presented results are satisfying and shows that flight experiments and simulations of the quadcopter control using haptics is a novel area of research which helps perform operations more successfully and give more control to the operator when operating in difficult environments. By using haptic accidents can be minimised and the functional performance of the operator and the UAV will be significantly enhanced. This concept and area of research of haptic control can be further developed accordingly to the needs of specific applications

    The Underpinnings of Workload in Unmanned Vehicle Systems

    Get PDF
    This paper identifies and characterizes factors that contribute to operator workload in unmanned vehicle systems. Our objective is to provide a basis for developing models of workload for use in design and operation of complex human-machine systems. In 1986, Hart developed a foundational conceptual model of workload, which formed the basis for arguably the most widely used workload measurement techniquethe NASA Task Load Index. Since that time, however, there have been many advances in models and factor identification as well as workload control measures. Additionally, there is a need to further inventory and describe factors that contribute to human workload in light of technological advances, including automation and autonomy. Thus, we propose a conceptual framework for the workload construct and present a taxonomy of factors that can contribute to operator workload. These factors, referred to as workload drivers, are associated with a variety of system elements including the environment, task, equipment and operator. In addition, we discuss how workload moderators, such as automation and interface design, can be manipulated in order to influence operator workload. We contend that workload drivers, workload moderators, and the interactions among drivers and moderators all need to be accounted for when building complex, human-machine systems

    Virtual and Mixed Reality in Telerobotics: A Survey

    Get PDF

    Sensor Augmented Virtual Reality Based Teleoperation Using Mixed Autonomy

    Get PDF
    A multimodal teleoperation interface is introduced, featuring an integrated virtual reality (VR) based simulation augmented by sensors and image processing capabilities onboard the remotely operated vehicle. The proposed virtual reality interface fuses an existing VR model with live video feed and prediction states, thereby creating a multimodal control interface. VR addresses the typical limitations of video based teleoperation caused by signal lag and limited field of view, allowing the operator to navigate in a continuous fashion. The vehicle incorporates an onboard computer and a stereo vision system to facilitate obstacle detection. A vehicle adaptation system with a priori risk maps and a real-state tracking system enable temporary autonomous operation of the vehicle for local navigation around obstacles and automatic re-establishment of the vehicle’s teleoperated state. The system provides real time update of the virtual environment based on anomalies encountered by the vehicle. The VR based multimodal teleoperation interface is expected to be more adaptable and intuitive when compared with other interfaces
    • …
    corecore