7,431 research outputs found

    Forecasting stock prices using a novel filtering-combination technique: Application to the Pakistan stock exchange

    Get PDF
    Traders and investors find predicting stock market values an intriguing subject to study in stock exchange markets. Accurate projections lead to high financial revenues and protect investors from market risks. This research proposes a unique filtering-combination approach to increase forecast accuracy. The first step is to filter the original series of stock market prices into two new series, consisting of a nonlinear trend series in the long run and a stochastic component of a series, using the Hodrick-Prescott filter. Next, all possible filtered combination models are considered to get the forecasts of each filtered series with linear and nonlinear time series forecasting models. Then, the forecast results of each filtered series are combined to extract the final forecasts. The proposed filtering-combination technique is applied to Pakistan's daily stock market price index data from January 2, 2013 to February 17, 2023. To assess the proposed forecasting methodology's performance in terms of model consistency, efficiency and accuracy, we analyze models in different data set ratios and calculate four mean errors, correlation coefficients and directional mean accuracy. Last, the authors recommend testing the proposed filtering-combination approach for additional complicated financial time series data in the future to achieve highly accurate, efficient and consistent forecasts

    An Optimal House Price Prediction Algorithm: XGBoost

    Get PDF
    An accurate prediction of house prices is a fundamental requirement for various sectors, including real estate and mortgage lending. It is widely recognized that a property’s value is not solely determined by its physical attributes but is significantly influenced by its surrounding neighborhood. Meeting the diverse housing needs of individuals while balancing budget constraints is a primary concern for real estate developers. To this end, we addressed the house price prediction problem as a regression task and thus employed various machine learning (ML) techniques capable of expressing the significance of independent variables. We made use of the housing dataset of Ames City in Iowa, USA to compare XGBoost, support vector regressor, random forest regressor, multilayer perceptron, and multiple linear regression algorithms for house price prediction. Afterwards, we identified the key factors that influence housing costs. Our results show that XGBoost is the best performing model for house price prediction. Our findings present valuable insights and tools for stakeholders, facilitating more accurate property price estimates and, in turn, enabling more informed decision making to meet the housing needs of diverse populations while considering budget constraints

    Harnessing eXplainable artificial intelligence for feature selection in time series energy forecasting : a comparative analysis of Grad-CAM and SHAP

    Get PDF
    DATA AVAILABILITY: Datasets related to this article can be found at [63], an open-source online data repository hosted at Mendeley Data.This study investigates the efficacy of Explainable Artificial Intelligence (XAI) methods, specifically Gradient-weighted Class Activation Mapping (Grad-CAM) and Shapley Additive Explanations (SHAP), in the feature selection process for national demand forecasting. Utilising a multi-headed Convolutional Neural Network (CNN), both XAI methods exhibit capabilities in enhancing forecasting accuracy and model efficiency by identifying and eliminating irrelevant features. Comparative analysis revealed Grad-CAM’s exceptional computational efficiency in high-dimensional applications and SHAP’s superior ability in revealing features that degrade forecast accuracy. However, limitations are found in both methods, with Grad-CAM including features that decrease model stability, and SHAP inaccurately ranking significant features. Future research should focus on refining these XAI methods to overcome these limitations and further probe into other XAI methods’ applicability within the time-series forecasting domain. This study underscores the potential of XAI in improving load forecasting, which can contribute significantly to the development of more interpretative, accurate and efficient forecasting models.National Key R&D Program of China, National Natural Science Foundation of China, National Research Foundation China/South Africa Research Cooperation Programme, China/South Africa Bilateral, and Royal Academy of Engineering Transforming Systems through Partnership.http://www.elsevier.com/locate/apenergyElectrical, Electronic and Computer Engineerin

    Organizing sustainable development

    Get PDF
    The role and meaning of sustainable development have been recognized in the scientific literature for decades. However, there has recently been a dynamic increase in interest in the subject, which results in numerous, in-depth scientific research and publications with an interdisciplinary dimension. This edited volume is a compendium of theoretical knowledge on sustainable development. The context analysed in the publication includes a multi-level and multi-aspect analysis starting from the historical and legal conditions, through elements of the macro level and the micro level, inside the organization. Organizing Sustainable Development offers a systematic and comprehensive theoretical analysis of sustainable development supplemented with practical examples, which will allow obtaining comprehensive knowledge about the meaning and its multi-context application in practice. It shows the latest state of knowledge on the topic and will be of interest to students at an advanced level, academics and reflective practitioners in the fields of sustainable development, management studies, organizational studies and corporate social responsibility

    Integrating forecasting in metaheuristic methods to solve dynamic routing problems: evidence from the logistic processes of tuna vessels

    Get PDF
    The multiple Traveling Salesman Problem (mTSP) is a widespread phenomenon in real-life scenarios, and in fact it has been addressed from multiple perspectives in recent decades. However, mTSP in dynamic circumstances entails a greater complexity that recent approaches are still trying to grasp. Beyond time windows, capacity and other parameters that characterize the dynamics of each scenario, moving targets is one of the underdeveloped issues in the field of mTSP. The approach of this paper harnesses a simple prediction method to prove that integrating forecasting within a metaheuristic evolutionary-based method, such as genetic algorithms, can yield better results in a dynamic scenario than their simple non-predictive version. Real data is used from the retrieval of Fish Aggregating Devices (FADs) by tuna vessels in the Indian Ocean. Based on historical data registered by the GPS system of the buoys attached to the devices, their trajectory is firstly forecast to feed subsequently the functioning of a genetic algorithm that searches for the optimal route of tuna vessels in terms of total distance traveled. Thus, although valid for static cases and for the Vehicle Routing Problem (VRP), the main contribution of this method over existing literature lies in its application as a global search method to solve the multiple TSP with moving targets in many dynamic real-life optimization problems.Ministerio de Economía y Competitividad | Ref. ECO2016-76625-RXunta de Galicia | Ref. GRC2014/02

    Perceived creepiness in response to smart home assistants: A multi-method study

    Get PDF
    Smart home assistants (SHAs) have gained a foothold in many households. Although SHAs have many beneficial capabilities, they also have characteristics that are colloquially described as creepy – a fact that may deter potential users from adopting and utilizing them. Previous research has examined SHAs neither from the perspective of resistance nor the perspective of creepiness. The present research addresses this gap and adopts a multi-method research design with four sequential studies. Study 1 serves as a pre-study and provides initial exploratory insights into the concept of creepiness in the context of SHAs. Study 2 focuses on developing a measurement instrument to assess perceived creepiness. Study 3 uses an online experiment to test the nomological validity of the construct of creepiness in a larger conceptual model. Study 4 further elucidates the underlying behavioral dynamics using focus group analysis. The findings contribute to the literature on the dark side of smart technology by analyzing the triggers and mechanisms underlying perceived creepiness as a novel inhibitor to SHAs. In addition, this study provides actionable design recommendations that allow practitioners to mitigate end users’ potential perceptions of creepiness associated with SHAs and similar smart technologies

    UMSL Bulletin 2023-2024

    Get PDF
    The 2023-2024 Bulletin and Course Catalog for the University of Missouri St. Louis.https://irl.umsl.edu/bulletin/1088/thumbnail.jp

    Farmers’ Toolkit: Deep Learning in Weed Detection and Precision Crop & Fertilizer Recommendations

    Get PDF
    Agriculture is widely recognized as a significant and indispensable occupation on a global scale. The current imperative is to optimize agricultural practices and progressively transition towards smart agriculture. The Internet of Things (IoT) technology has dramatically enhanced people’s daily lives via diverse applications across several domains. Previous studies have yet to effectively incorporate Artificial Intelligence (AI) with sensor technology to provide comprehensive guidance to agricultural practitioners, hindering their ability to achieve good outcomes. This research offers Farmers’ Toolkit with four layers: sensor, network, service, and application. This toolkit aims to facilitate the implementation of a smart farming system while effectively managing energy resources. With a specific emphasis on the application layer, the toolkit uses a deep learning methodology to construct a fertilizer recommendation system that aligns with the expert’s perspective. This study utilizes IoT devices and Wireless Sensor Network (WSN) methods to enhance the efficiency and speed of recommending appropriate crops to farmers. The recommendation process considers several criteria: temperature, yearly precipitation, land area, prior crop history, and available resources. The identification of undesirable vegetation on agricultural fields, namely the detection of weeds, is carried out using drone technology equipped with frame-capturing capabilities and advanced deep-learning algorithms. The findings demonstrate an accuracy rate of 94%, precision rate of 92%, recall rate of 96%, and F1 score of 94%. The toolkit for farmers alleviates physical labor and time expended on various agricultural tasks while enhancing overall land productivity, mitigating potential crop failures in specific soil conditions, and minimizing crop damage inflicted by weeds

    Multidisciplinary perspectives on Artificial Intelligence and the law

    Get PDF
    This open access book presents an interdisciplinary, multi-authored, edited collection of chapters on Artificial Intelligence (‘AI’) and the Law. AI technology has come to play a central role in the modern data economy. Through a combination of increased computing power, the growing availability of data and the advancement of algorithms, AI has now become an umbrella term for some of the most transformational technological breakthroughs of this age. The importance of AI stems from both the opportunities that it offers and the challenges that it entails. While AI applications hold the promise of economic growth and efficiency gains, they also create significant risks and uncertainty. The potential and perils of AI have thus come to dominate modern discussions of technology and ethics – and although AI was initially allowed to largely develop without guidelines or rules, few would deny that the law is set to play a fundamental role in shaping the future of AI. As the debate over AI is far from over, the need for rigorous analysis has never been greater. This book thus brings together contributors from different fields and backgrounds to explore how the law might provide answers to some of the most pressing questions raised by AI. An outcome of the Católica Research Centre for the Future of Law and its interdisciplinary working group on Law and Artificial Intelligence, it includes contributions by leading scholars in the fields of technology, ethics and the law.info:eu-repo/semantics/publishedVersio
    • …
    corecore