338 research outputs found

    Performance of a deep convolutional neural network for MRI-based vertebral body measurements and insufficiency fracture detection

    Full text link
    OBJECTIVES The aim is to validate the performance of a deep convolutional neural network (DCNN) for vertebral body measurements and insufficiency fracture detection on lumbar spine MRI. METHODS This retrospective analysis included 1000 vertebral bodies in 200 patients (age 75.2 ± 9.8 years) who underwent lumbar spine MRI at multiple institutions. 160/200 patients had ≥ one vertebral body insufficiency fracture, 40/200 had no fracture. The performance of the DCNN and that of two fellowship-trained musculoskeletal radiologists in vertebral body measurements (anterior/posterior height, extent of endplate concavity, vertebral angle) and evaluation for insufficiency fractures were compared. Statistics included (a) interobserver reliability metrics using intraclass correlation coefficient (ICC), kappa statistics, and Bland-Altman analysis, and (b) diagnostic performance metrics (sensitivity, specificity, accuracy). A statistically significant difference was accepted if the 95% confidence intervals did not overlap. RESULTS The inter-reader agreement between radiologists and the DCNN was excellent for vertebral body measurements, with ICC values of > 0.94 for anterior and posterior vertebral height and vertebral angle, and good to excellent for superior and inferior endplate concavity with ICC values of 0.79-0.85. The performance of the DCNN in fracture detection yielded a sensitivity of 0.941 (0.903-0.968), specificity of 0.969 (0.954-0.980), and accuracy of 0.962 (0.948-0.973). The diagnostic performance of the DCNN was independent of the radiological institution (accuracy 0.964 vs. 0.960), type of MRI scanner (accuracy 0.957 vs. 0.964), and magnetic field strength (accuracy 0.966 vs. 0.957). CONCLUSIONS A DCNN can achieve high diagnostic performance in vertebral body measurements and insufficiency fracture detection on heterogeneous lumbar spine MRI. KEY POINTS • A DCNN has the potential for high diagnostic performance in measuring vertebral bodies and detecting insufficiency fractures of the lumbar spine

    AI MSK clinical applications: spine imaging

    Full text link
    Recent investigations have focused on the clinical application of artificial intelligence (AI) for tasks specifically addressing the musculoskeletal imaging routine. Several AI applications have been dedicated to optimizing the radiology value chain in spine imaging, independent from modality or specific application. This review aims to summarize the status quo and future perspective regarding utilization of AI for spine imaging. First, the basics of AI concepts are clarified. Second, the different tasks and use cases for AI applications in spine imaging are discussed and illustrated by examples. Finally, the authors of this review present their personal perception of AI in daily imaging and discuss future chances and challenges that come along with AI-based solutions

    Assessing the Utility of a Video-Based Motion Capture Alternative in the Assessment of Lumbar Spine Planar Angular Joint Kinematics

    Get PDF
    Markerless motion capture is a novel technique to measure human movement kinematics. The purpose of this research is to evaluate the markerless algorithm, DeepLabCut (DLC) against a 3D motion capture system (Vicon Motion Systems Ltd., Oxford, UK) in the analysis of planar spine and elbow flexion-extension movement. Data were acquired concurrently from DLC and Vicon for all movements. A novel DLC model was trained using data derived from a subset of participants (training group). Accuracy and precision were assessed from data derived from the training group as well as in a new set of participants (testing group). Two-way SPM ANOVAs were used to detect significant differences between the training vs. testing sets, capture methods (Vicon vs. DLC), as well as potential higher order interaction effect between these independent variables in the estimation of flexion extension angles and variability. No significant differences were observed in any planar angles, nor were any higher order interactions observed between each motion capture modality and the training vs. testing datasets. Bland Altman plots were also generated to depict the mean bias and level of agreement between DLC and Vicon for both training, and testing datasets. Supplemental analyses, suggest that these results are partially affected by the alignment of each participant’s body segments with respect to each planar reference frame. This research suggests that DLC-derived planar kinematics of both the elbow and lumbar spine are of acceptable accuracy and precision when compared to conventional laboratory gold-standards (Vicon)

    Development of Scoliotic spine severity detection using deep learning Algorithms

    Get PDF
    According to research conducted by Johns Hopkins' Division of Pediatric Orthopedic Surgery, around three million new instances of Scoliosis are identified each year, with the majority of cases affecting children between the ages of 10 and 12. The current method of diagnosing and treating Scoliosis, which includes spinal injections, back braces, and a variety of other types of surgery, may have resulted in inconsistencies and ineffective treatment by professionals. Other scoliosis diagnosis methods have been developed since the technology's invention. Using Convolutional Neural Network (CNN), this research will integrate an artificial intelligence-assisted method for detecting and classifying Scoliosis illness types. The software model will include an initialization phase, preprocessing the dataset, segmentation of features, performance measurement, and severity classification. The neural network used in this study is U-Net, which was developed specifically for biomedical picture segmentation. It has demonstrated reliable and accurate results, with prediction accuracy reaching 94.42%. As a result, it has been established that employing an algorithm helped by artificial intelligence provides a higher level of accuracy in detecting Scoliosis than manual diagnosis by professionals
    corecore