1,171 research outputs found

    Local Short Term Electricity Load Forecasting: Automatic Approaches

    Full text link
    Short-Term Load Forecasting (STLF) is a fundamental component in the efficient management of power systems, which has been studied intensively over the past 50 years. The emerging development of smart grid technologies is posing new challenges as well as opportunities to STLF. Load data, collected at higher geographical granularity and frequency through thousands of smart meters, allows us to build a more accurate local load forecasting model, which is essential for local optimization of power load through demand side management. With this paper, we show how several existing approaches for STLF are not applicable on local load forecasting, either because of long training time, unstable optimization process, or sensitivity to hyper-parameters. Accordingly, we select five models suitable for local STFL, which can be trained on different time-series with limited intervention from the user. The experiment, which consists of 40 time-series collected at different locations and aggregation levels, revealed that yearly pattern and temperature information are only useful for high aggregation level STLF. On local STLF task, the modified version of double seasonal Holt-Winter proposed in this paper performs relatively well with only 3 months of training data, compared to more complex methods

    Formalized Conceptual Spaces with a Geometric Representation of Correlations

    Full text link
    The highly influential framework of conceptual spaces provides a geometric way of representing knowledge. Instances are represented by points in a similarity space and concepts are represented by convex regions in this space. After pointing out a problem with the convexity requirement, we propose a formalization of conceptual spaces based on fuzzy star-shaped sets. Our formalization uses a parametric definition of concepts and extends the original framework by adding means to represent correlations between different domains in a geometric way. Moreover, we define various operations for our formalization, both for creating new concepts from old ones and for measuring relations between concepts. We present an illustrative toy-example and sketch a research project on concept formation that is based on both our formalization and its implementation.Comment: Published in the edited volume "Conceptual Spaces: Elaborations and Applications". arXiv admin note: text overlap with arXiv:1706.06366, arXiv:1707.02292, arXiv:1707.0516

    Advanced Control of Piezoelectric Actuators.

    Get PDF
    168 p.A lo largo de las últimas décadas, la ingeniería de precisión ha tenido un papel importante como tecnología puntera donde la tendencia a la reducción de tamaño de las herramientas industriales ha sido clave. Los procesos industriales comenzaron a demandar precisión en el rango de nanómetros a micrómetros. Pese a que los actuadores convencionales no pueden reducirse lo suficiente ni lograr tal exactitud, los actuadores piezoeléctricos son una tecnología innovadora en este campo y su rendimiento aún está en estudio en la comunidad científica. Los actuadores piezoeléctricos se usan comúnmente en micro y nanomecatrónica para aplicaciones de posicionamiento debido a su alta resolución y fuerza de actuación (pueden llegar a soportar fuerzas de hasta 100 Newtons) en comparación con su tamaño. Todas estas características también se pueden combinar con una actuación rápida y rigidez, según los requisitos de la aplicación. Por lo tanto, con estas características, los actuadores piezoeléctricos pueden ser utilizados en una amplia variedad de aplicaciones industriales. Los efectos negativos, como la fluencia, vibraciones y la histéresis, se estudian comúnmente para mejorar el rendimiento cuando se requiere una alta precisión. Uno de los efectos que más reduce el rendimiento de los PEA es la histéresis. Esto se produce especialmente cuando el actuador está en una aplicación de guiado, por lo que la histéresis puede inducir errores que pueden alcanzar un valor de hasta 22%. Este fenómeno no lineal se puede definir como un efecto generado por la combinación de acciones mecánicas y eléctricas que depende de estados previos. La histéresis se puede reducir principalmente mediante dos estrategias: rediseño de materiales o algoritmos de control tipo feedback. El rediseño de material comprende varias desventajas por lo que el motivo principal de esta tesis está enfocado al diseño de algoritmos de control para reducir la histéresis. El objetivo principal de esta tesis es el desarrollo de estrategias de control avanzadas que puedan mejorar la precisión de seguimiento de los actuadores piezoeléctricos comerciale

    Approximation Theory and Related Applications

    Get PDF
    In recent years, we have seen a growing interest in various aspects of approximation theory. This happened due to the increasing complexity of mathematical models that require computer calculations and the development of the theoretical foundations of the approximation theory. Approximation theory has broad and important applications in many areas of mathematics, including functional analysis, differential equations, dynamical systems theory, mathematical physics, control theory, probability theory and mathematical statistics, and others. Approximation theory is also of great practical importance, as approximate methods and estimation of approximation errors are used in physics, economics, chemistry, signal theory, neural networks and many other areas. This book presents the works published in the Special Issue "Approximation Theory and Related Applications". The research of the world’s leading scientists presented in this book reflect new trends in approximation theory and related topics

    Towards An Intelligent Fuzzy Based Multimodal Two Stage Speech Enhancement System

    Get PDF
    This thesis presents a novel two stage multimodal speech enhancement system, making use of both visual and audio information to filter speech, and explores the extension of this system with the use of fuzzy logic to demonstrate proof of concept for an envisaged autonomous, adaptive, and context aware multimodal system. The design of the proposed cognitively inspired framework is scalable, meaning that it is possible for the techniques used in individual parts of the system to be upgraded and there is scope for the initial framework presented here to be expanded. In the proposed system, the concept of single modality two stage filtering is extended to include the visual modality. Noisy speech information received by a microphone array is first pre-processed by visually derived Wiener filtering employing the novel use of the Gaussian Mixture Regression (GMR) technique, making use of associated visual speech information, extracted using a state of the art Semi Adaptive Appearance Models (SAAM) based lip tracking approach. This pre-processed speech is then enhanced further by audio only beamforming using a state of the art Transfer Function Generalised Sidelobe Canceller (TFGSC) approach. This results in a system which is designed to function in challenging noisy speech environments (using speech sentences with different speakers from the GRID corpus and a range of noise recordings), and both objective and subjective test results (employing the widely used Perceptual Evaluation of Speech Quality (PESQ) measure, a composite objective measure, and subjective listening tests), showing that this initial system is capable of delivering very encouraging results with regard to filtering speech mixtures in difficult reverberant speech environments. Some limitations of this initial framework are identified, and the extension of this multimodal system is explored, with the development of a fuzzy logic based framework and a proof of concept demonstration implemented. Results show that this proposed autonomous,adaptive, and context aware multimodal framework is capable of delivering very positive results in difficult noisy speech environments, with cognitively inspired use of audio and visual information, depending on environmental conditions. Finally some concluding remarks are made along with proposals for future work

    The History of the Quantitative Methods in Finance Conference Series. 1992-2007

    Get PDF
    This report charts the history of the Quantitative Methods in Finance (QMF) conference from its beginning in 1993 to the 15th conference in 2007. It lists alphabetically the 1037 speakers who presented at all 15 conferences and the titles of their papers.

    1992 NASA/ASEE Summer Faculty Fellowship Program

    Get PDF
    For the 28th consecutive year, a NASA/ASEE Summer Faculty Fellowship Program was conducted at the Marshall Space Flight Center (MSFC). The program was conducted by the University of Alabama and MSFC during the period June 1, 1992 through August 7, 1992. Operated under the auspices of the American Society for Engineering Education, the MSFC program, was well as those at other centers, was sponsored by the Office of Educational Affairs, NASA Headquarters, Washington, DC. The basic objectives of the programs, which are the 29th year of operation nationally, are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate and exchange ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of the participants' institutions; and (4) to contribute to the research objectives of the NASA centers
    corecore