17,398 research outputs found

    V-Proportion: a method based on the Voronoi diagram to study spatial relations in neuronal mosaics of the retina

    Get PDF
    The visual system plays a predominant role in the human perception. Although all components of the eye are important to perceive visual information, the retina is a fundamental part of the visual system. In this work we study the spatial relations between neuronal mosaics in the retina. These relations have shown its importance to investigate possible constraints or connectivities between different spatially colocalized populations of neurons, and to explain how visual information spreads along the layers before being sent to the brain. We introduce the V-Proportion, a method based on the Voronoi diagram to study possible spatial interactions between two neuronal mosaics. Results in simulations as well as in real data demonstrate the effectiveness of this method to detect spatial relations between neurons in different layers

    Optical Image Blending for Underwater Mosaics

    Get PDF
    Typical problems for creation of consistent underwater mosaic are misalignment and inhomogeneous illumination of the image frames, which causes visible seams and consequently complicates post-processing of the mosaics such as object recognition and shape extraction. Two recently developed image blending methods were explored in the literature: gradient domain stitching and graph-cut method, and they allow for improvement of illumination inconsistency and ghosting effects, respectively. However, due to the specifics of underwater imagery, these two methods cannot be used within a straightforward manner. In this paper, a new improved blending algorithm is proposed based on these two methods. By comparing with the previous methods from a perceptual point of view and as a potential input for pattern recognition algorithms, our results show an improvement in decreasing the mosaic degradation due to feature doubling and rapid illumination change

    Enhancement of Underwater Video Mosaics for Post-Processing

    Get PDF
    Mosaics of seafloor created from still images or video acquired underwater have proved to be useful for construction of maps of forensic and archeological sites, species\u27 abundance estimates, habitat characterization, etc. Images taken by a camera mounted on a stable platform are registered (at first pair-wise and then globally) and assembled in a high resolution visual map of the surveyed area. While this map is usually sufficient for a human orientation and even quantitative measurements, it often contains artifacts that complicate an automatic post-processing (for example, extraction of shapes for organism counting, or segmentation for habitat characterization). The most prominent artifacts are inter-frame seams caused by inhomogeneous artificial illumination, and local feature misalignments due to parallax effects - result of an attempt to represent a 3D world on a 2D map. In this paper we propose two image processing techniques for mosaic quality enhancement - median mosaic-based illumination correction suppressing appearance of inter-frame seams, and micro warping decreasing influence of parallax effects

    Deep-sea image processing

    Get PDF
    High-resolution seafloor mapping often requires optical methods of sensing, to confirm interpretations made from sonar data. Optical digital imagery of seafloor sites can now provide very high resolution and also provides additional cues, such as color information for sediments, biota and divers rock types. During the cruise AT11-7 of the Woods Hole Oceanographic Institution (WHOI) vessel R/V Atlantis (February 2004, East Pacific Rise) visual imagery was acquired from three sources: (1) a digital still down-looking camera mounted on the submersible Alvin, (2) observer-operated 1-and 3-chip video cameras with tilt and pan capabilities mounted on the front of Alvin, and (3) a digital still camera on the WHOI TowCam (Fornari, 2003). Imagery from the first source collected on a previous cruise (AT7-13) to the Galapagos Rift at 86°W was successfully processed and mosaicked post-cruise, resulting in a single image covering area of about 2000 sq.m, with the resolution of 3 mm per pixel (Rzhanov et al., 2003). This paper addresses the issues of the optimal acquisition of visual imagery in deep-seaconditions, and requirements for on-board processing. Shipboard processing of digital imagery allows for reviewing collected imagery immediately after the dive, evaluating its importance and optimizing acquisition parameters, and augmenting acquisition of data over specific sites on subsequent dives.Images from the deepsea power and light (DSPL) digital camera offer the best resolution (3.3 Mega pixels) and are taken at an interval of 10 seconds (determined by the strobe\u27s recharge rate). This makes images suitable for mosaicking only when Alvin moves slowly (≪1/4 kt), which is not always possible for time-critical missions. Video cameras provided a source of imagery more suitable for mosaicking, despite its inferiority in resolution. We discuss required pre-processing and imageenhancement techniques and their influence on the interpretation of mosaic content. An algorithm for determination of camera tilt parameters from acquired imagery is proposed and robustness conditions are discussed

    From images via symbols to contexts: using augmented reality for interactive model acquisition

    Get PDF
    Systems that perform in real environments need to bind the internal state to externally perceived objects, events, or complete scenes. How to learn this correspondence has been a long standing problem in computer vision as well as artificial intelligence. Augmented Reality provides an interesting perspective on this problem because a human user can directly relate displayed system results to real environments. In the following we present a system that is able to bootstrap internal models from user-system interactions. Starting from pictorial representations it learns symbolic object labels that provide the basis for storing observed episodes. In a second step, more complex relational information is extracted from stored episodes that enables the system to react on specific scene contexts

    On Importance of Acoustic Backscatter Corrections for Texture-based Seafloor Characterization

    Get PDF
    Seafloor segmentation and characterization based on local textural properties of acoustic backscatter has been a subject of research since 1980s due to the highly textured appearance of sonar images. The approach consists of subdivision of sonar image in a set of patches of certain size and calculation of a vector of features reflecting the patch texture. Advance of multibeam echosounders (MBES) allowed application of texture-based techniques to real geographical space, and predicted boundaries between acoustic facies became experimentally verifiable. However, acoustic return from uncalibrated MBES produces artifacts in backscatter mosaics, which in turn affects accuracy of delineation. Development of Geocoder allowed creation of more visually consistent images, and reduced the number of factors influencing mosaic creation. It is intuitively clear that more accurate backscatter mosaics lead to more reliable classification results. However, this statement has never been thoroughly verified. It has not been investigated which corrections are important for texture-based characterization and which are not essential. In this paper the authors are investigating the Stanton Banks common dataset. Raw data files from the dataset have been processed by the Geocoder at different levels of corrections. Each processing resulted in a backscatter mosaic demonstrating artifacts of different levels of severity. Mosaics then underwent textural analysis and unsupervised classification using Matlab package SonarClass. Results of seafloor characterization corresponding to varying levels of corrections were finally compared to the one generated by the best possible mosaic (the one embodying all the available corrections), providing an indicator of classification accuracy and giving guidance about which mosaic corrections are crucial for acoustic classification and which could be safely ignored

    Automated pebble mosaic stylization of images

    Get PDF
    Digital mosaics have usually used regular tiles, simulating the historical "tessellated" mosaics. In this paper, we present a method for synthesizing pebble mosaics, a historical mosaic style in which the tiles are rounded pebbles. We address both the tiling problem, where pebbles are distributed over the image plane so as to approximate the input image content, and the problem of geometry, creating a smooth rounded shape for each pebble. We adapt SLIC, simple linear iterative clustering, to obtain elongated tiles conforming to image content, and smooth the resulting irregular shapes into shapes resembling pebble cross-sections. Then, we create an interior and exterior contour for each pebble and solve a Laplace equation over the region between them to obtain height-field geometry. The resulting pebble set approximates the input image while presenting full geometry that can be rendered and textured for a highly detailed representation of a pebble mosaic
    corecore