4,536 research outputs found

    Out of equilibrium dynamics of classical and quantum complex systems

    Get PDF
    Equilibrium is a rather ideal situation, the exception rather than the rule in Nature. Whenever the external or internal parameters of a physical system are varied its subsequent relaxation to equilibrium may be either impossible or take very long times. From the point of view of fundamental physics no generic principle such as the ones of thermodynamics allows us to fully understand their behaviour. The alternative is to treat each case separately. It is illusionary to attempt to give, at least at this stage, a complete description of all non-equilibrium situations. Still, one can try to identify and characterise some concrete but still general features of a class of out of equilibrium problems - yet to be identified - and search for a unified description of these. In this report I briefly describe the behaviour and theory of a set of non-equilibrium systems and I try to highlight common features and some general laws that have emerged in recent years.Comment: 36 pages, to be published in Compte Rendus de l'Academie de Sciences, T. Giamarchi e

    Random Neural Networks and Optimisation

    Get PDF
    In this thesis we introduce new models and learning algorithms for the Random Neural Network (RNN), and we develop RNN-based and other approaches for the solution of emergency management optimisation problems. With respect to RNN developments, two novel supervised learning algorithms are proposed. The first, is a gradient descent algorithm for an RNN extension model that we have introduced, the RNN with synchronised interactions (RNNSI), which was inspired from the synchronised firing activity observed in brain neural circuits. The second algorithm is based on modelling the signal-flow equations in RNN as a nonnegative least squares (NNLS) problem. NNLS is solved using a limited-memory quasi-Newton algorithm specifically designed for the RNN case. Regarding the investigation of emergency management optimisation problems, we examine combinatorial assignment problems that require fast, distributed and close to optimal solution, under information uncertainty. We consider three different problems with the above characteristics associated with the assignment of emergency units to incidents with injured civilians (AEUI), the assignment of assets to tasks under execution uncertainty (ATAU), and the deployment of a robotic network to establish communication with trapped civilians (DRNCTC). AEUI is solved by training an RNN tool with instances of the optimisation problem and then using the trained RNN for decision making; training is achieved using the developed learning algorithms. For the solution of ATAU problem, we introduce two different approaches. The first is based on mapping parameters of the optimisation problem to RNN parameters, and the second on solving a sequence of minimum cost flow problems on appropriately constructed networks with estimated arc costs. For the exact solution of DRNCTC problem, we develop a mixed-integer linear programming formulation, which is based on network flows. Finally, we design and implement distributed heuristic algorithms for the deployment of robots when the civilian locations are known or uncertain

    Dynamical independence: discovering emergent macroscopic processes in complex dynamical systems

    Full text link
    We introduce a notion of emergence for coarse-grained macroscopic variables associated with highly-multivariate microscopic dynamical processes, in the context of a coupled dynamical environment. Dynamical independence instantiates the intuition of an emergent macroscopic process as one possessing the characteristics of a dynamical system "in its own right", with its own dynamical laws distinct from those of the underlying microscopic dynamics. We quantify (departure from) dynamical independence by a transformation-invariant Shannon information-based measure of dynamical dependence. We emphasise the data-driven discovery of dynamically-independent macroscopic variables, and introduce the idea of a multiscale "emergence portrait" for complex systems. We show how dynamical dependence may be computed explicitly for linear systems via state-space modelling, in both time and frequency domains, facilitating discovery of emergent phenomena at all spatiotemporal scales. We discuss application of the state-space operationalisation to inference of the emergence portrait for neural systems from neurophysiological time-series data. We also examine dynamical independence for discrete- and continuous-time deterministic dynamics, with potential application to Hamiltonian mechanics and classical complex systems such as flocking and cellular automata.Comment: 38 pages, 7 figure

    Survey of highly non-Keplerian orbits with low-thrust propulsion

    Get PDF
    Celestial mechanics has traditionally been concerned with orbital motion under the action of a conservative gravitational potential. In particular, the inverse square gravitational force due to the potential of a uniform, spherical mass leads to a family of conic section orbits, as determined by Isaac Newton, who showed that Kepler‟s laws were derivable from his theory of gravitation. While orbital motion under the action of a conservative gravitational potential leads to an array of problems with often complex and interesting solutions, the addition of non-conservative forces offers new avenues of investigation. In particular, non-conservative forces lead to a rich diversity of problems associated with the existence, stability and control of families of highly non-Keplerian orbits generated by a gravitational potential and a non-conservative force. Highly non-Keplerian orbits can potentially have a broad range of practical applications across a number of different disciplines. This review aims to summarize the combined wealth of literature concerned with the dynamics, stability and control of highly non-Keplerian orbits for various low thrust propulsion devices, and to demonstrate some of these potential applications

    Novel mission concepts for polar coverage : An overview of recent developments and possible future applications

    Get PDF
    The paper provides a survey of novel mission concepts for continuous, hemispheric polar observation and direct-link polar telecommunications. It is well known that these services cannot be provided by traditional platforms: geostationary satellites do not cover high-latitude regions, while low- and medium-orbit Sun-synchronous spacecraft only cover a narrow swath of the Earth at each passage. Concepts that are proposed in the literature are described, including the pole-sitter concept (in which a spacecraft is stationary above the pole), spacecraft in artificial equilibrium points in the Sun-Earth system and non-Keplerian polar Molniya orbits. Additionally, novel displaced eight-shaped orbits at Lagrangian points are presented. For many of these concepts, a continuous acceleration is required and propulsion systems include solar electric propulsion, solar sail and a hybridisation of the two. Advantages and drawbacks of each mission concept are assessed, and a comparison in terms of high-latitude coverage and distance, spacecraft mass, payload and lifetime is presented. Finally, the paper will describe a number of potential applications enabled by these concepts, focusing on polar Earth observation and telecommunications
    • …
    corecore