9 research outputs found

    Transmit Beamforming in Dense Networks-A Review

    Get PDF
    Communication technology has prospered in manifolds over the last decade. The scarcity of spectrum as well as the demand for higher data rates and increase in capacity has become a matter of concern. Newer technologies have evolved time and again, the latest of which is Long Term Evolution (LTE) and Long Term Evolution Advanced (LTE-A) systems more commonly known as 4G technology. The striking feature of LTE/LTE-A is the deployment of smaller cells (femto cells) in the vicinity of a large macro cells resulting in a dense network. As a result the data rate as well as capacity has increased in manifolds but the detrimental factor is the issue of interference between the various cells. Beamforming provides a solution in removing the issues of interference in dense networks. This paper focuses on the interference scenario in LTE dense networks and gives an overview of different beamforming methods that can provide a solution to the interference problem. Further, a review of several such methods so far proposed in available literature has been presented in this paper.Keywords:LTE/LTE-A, Dense Network, Interference,Beamformin

    Null Steering of Adaptive Beamforming Using Linear Constraint Minimum Variance Assisted by Particle Swarm Optimization, Dynamic Mutated Artificial Immune System, and Gravitational Search Algorithm

    Get PDF
    Linear constraint minimum variance (LCMV) is one of the adaptive beamforming techniques that is commonly applied to cancel interfering signals and steer or produce a strong beam to the desired signal through its computed weight vectors. However, weights computed by LCMV usually are not able to form the radiation beam towards the target user precisely and not good enough to reduce the interference by placing null at the interference sources. It is difficult to improve and optimize the LCMV beamforming technique through conventional empirical approach. To provide a solution to this problem, artificial intelligence (AI) technique is explored in order to enhance the LCMV beamforming ability. In this paper, particle swarm optimization (PSO), dynamic mutated artificial immune system (DM-AIS), and gravitational search algorithm (GSA) are incorporated into the existing LCMV technique in order to improve the weights of LCMV. The simulation result demonstrates that received signal to interference and noise ratio (SINR) of target user can be significantly improved by the integration of PSO, DM-AIS, and GSA in LCMV through the suppression of interference in undesired direction. Furthermore, the proposed GSA can be applied as a more effective technique in LCMV beamforming optimization as compared to the PSO technique. The algorithms were implemented using Matlab program

    Cardiac seismocardiography analysis using 2- elements accelerometer sensor array and beamforming technique

    Get PDF
    Human heart contains a lot of informations that indicate the condition of its operation and health. The informations can be extracted using image, acoustic, electric and vibration signal. The problem with current technology is that it suffers badly with noise and other unwanted interference. To address this noise issue with the latest technology is echocardiography, a diagnostic tool for diagnosing on cardiac contractility and valvular disease. However, this device is quite costly and labour intensive which requires a specialist who is expert and enough experience in using this equipment. Furthermore, most of medical institutes unable to afford the cost of equipment facility. This study aimed to investigate the application of a non-invasive cardiac diagnostic approach using an accelerometer sensor array, coupled with a directional filtering approach to remove the unwanted noise. This work proposed the utilization of directional filtering method to remove noise using body vibration sensor by employing adaptive beamforming method without altering the signal information. Seismocardiography (SCG) was used to capture body vibration signals recorded via vibration sensor that collects information related to the heart pumping activities and later diagnosed the heart disease. The sensor array was used to collect SCG signal for 28 cycle data from normal and abnormal heart conditions of subjects in supine position. It was found that signal of heart disease information in SCG was overlapped with the noise signal. A directional denoising method which comprised of Delay and Sum (DAS) beamforming and Linearly Constrained Minimum Variance (LCMV) beamforming algorithm were applied, and the performance were compared. The result of signal to noise ratio (SNR) for DAS beamforming algorithm on normal subject was 7.11dB and abnormal subject was 4.13dB. For LCMV beamforming algorithm, normal subject was 10.85dB and abnormal subject is 7.04dB. Based on these results, it showed that the LCMV beamforming performed better than DAS as indicated in the SNR improvement by 30%. This SNR improvement represents the better accuracy of heart disease diagnosis

    Keilaavan millimetriaaltoradiolinkin suuntaaminen ja seuraaminen

    Get PDF
    In order to provide high-throughput mobile broadband in a dense urban information society, upcoming cellular networks will finally employ the under-utilized millimeter-wave (mmW) frequencies. The challenging mmW radio environment, however, necessitates massive cell densification with wireless backhauling using very directional links. This thesis investigates how these links between access points may be aligned efficiently, and how alignment reflects the network organization. The work provides a thorough presentation of different high-level aspects and background information required when designing a mmW small cell system. In terms of alignment functionality, both automatic link establishment and proactive tracking are considered. Additionally, the presentation includes an overview of beam steerable antennas, mmW propagation in urban environments, and network organization. The thesis further specifies requirements, proposes possible approaches and compares those with existing implementations. Most of existing mmW beam alignment solutions are intended for short-range indoor communications and do not address the issues in cellular systems. While existing functionality considers only a single link between two devices, efficient design should consider both the entire network and the underlying phenomena. The devices should further exploit the existing network infrastructure, location and orientation information, and the concepts of machine learning. Even though the world has recently seen advancements in the related fields, there is still much work to be done before commercial deployment is possible.Seuraavan sukupolven matkaviestinjärjestelmien erittäin nopeissa datayhteyksissä tullaan hyödyntämään millimetriaaltoteknologiaa. Näillä taajuuksilla radioympäristö on kuitenkin hyvin haastava, mikä edellyttää verkon solutiheyden moninkertaistamista, täysin langattomia tukiasemia ja erittäin suuntaavia antenneja. Tässä diplomityössä tutkitaan eri keinoja kuinka tukiasemien väliset linkit kohdistetaan tehokkaasti, ja miten se vaikuttaa verkon rakenteeseen ja hallintaan. Työ tarjoaa kattavan taustaselvityksen mm-aaltosoluverkon toteuttamiseen tarvittavista asioista. Keilanohjausta tarkastellaan sekä verkon automaattisen laajentamisen että kohteen aktiivisen seurauksen kannalta. Tämän lisäksi työssä tutkitaan keilattavia antenneja, mm-aaltojen etenemistä kaupunkiympäristöissä ja verkkorakennetta. Näiden lisäksi työssä rajataan edellytykset, esitetään mahdollisia ratkaisuja, ja vertaillaan näitä olemassa oleviin toteutuksiin. Nykyiset keilaustoteutukset ovat pääasiassa suunniteltu lyhyen kantaman sisäyhteyksille, eivätkä siten vastaa ongelman asettelua. Aikaisempi toiminnallisuus keskittyy yhteen ainoaan linkkiin vaikka tehokas toteutus huomioisi koko järjestelmän kohdistusongelman fysikaalista perustaa unohtamatta. Verkkolaitteiden tulisi hyödyntää olemassa olevaa radioverkkoa, sekä paikka- että suuntatietoja, ja koneoppimisen keinoja. Vaikka aiheeseen liittyvä teknologia on kehittynyt viime vuosina harppauksin, mm-aaltosoluverkot ovat kaikkea muuta kuin valmiita markkinoille

    Abstracts on Radio Direction Finding (1899 - 1995)

    Get PDF
    The files on this record represent the various databases that originally composed the CD-ROM issue of "Abstracts on Radio Direction Finding" database, which is now part of the Dudley Knox Library's Abstracts and Selected Full Text Documents on Radio Direction Finding (1899 - 1995) Collection. (See Calhoun record https://calhoun.nps.edu/handle/10945/57364 for further information on this collection and the bibliography). Due to issues of technological obsolescence preventing current and future audiences from accessing the bibliography, DKL exported and converted into the three files on this record the various databases contained in the CD-ROM. The contents of these files are: 1) RDFA_CompleteBibliography_xls.zip [RDFA_CompleteBibliography.xls: Metadata for the complete bibliography, in Excel 97-2003 Workbook format; RDFA_Glossary.xls: Glossary of terms, in Excel 97-2003 Workbookformat; RDFA_Biographies.xls: Biographies of leading figures, in Excel 97-2003 Workbook format]; 2) RDFA_CompleteBibliography_csv.zip [RDFA_CompleteBibliography.TXT: Metadata for the complete bibliography, in CSV format; RDFA_Glossary.TXT: Glossary of terms, in CSV format; RDFA_Biographies.TXT: Biographies of leading figures, in CSV format]; 3) RDFA_CompleteBibliography.pdf: A human readable display of the bibliographic data, as a means of double-checking any possible deviations due to conversion
    corecore