176,173 research outputs found

    Catalytically active peptide–gold nanoparticle conjugates: Prospecting for artificial enzymes

    Get PDF
    The self‐assembly of peptides onto the surface of gold nanoparticles has emerged as a promising strategy towards the creation of artificial enzymes. The resulting high local peptide density surrounding the nanoparticle leads to cooperative and synergistic effects, which result in rate accelerations and distinct catalytic properties compared to the unconjugated peptide. This Minireview summarizes contributions to and progress made in the field of catalytically active peptide–gold nanoparticle conjugates. The origin of distinct properties, as well as potential applications, are also discussed

    Enzymatic functionalization of carbon-hydrogen bonds

    Get PDF
    The development of new catalytic methods to functionalize carbon–hydrogen (C–H) bonds continues to progress at a rapid pace due to the significant economic and environmental benefits of these transformations over traditional synthetic methods. In nature, enzymes catalyze regio- and stereoselective C–H bond functionalization using transformations ranging from hydroxylation to hydroalkylation under ambient reaction conditions. The efficiency of these enzymes relative to analogous chemical processes has led to their increased use as biocatalysts in preparative and industrial applications. Furthermore, unlike small molecule catalysts, enzymes can be systematically optimized via directed evolution for a particular application and can be expressed in vivo to augment the biosynthetic capability of living organisms. While a variety of technical challenges must still be overcome for practical application of many enzymes for C–H bond functionalization, continued research on natural enzymes and on novel artificial metalloenzymes will lead to improved synthetic processes for efficient synthesis of complex molecules. In this critical review, we discuss the most prevalent mechanistic strategies used by enzymes to functionalize non-acidic C–H bonds, the application and evolution of these enzymes for chemical synthesis, and a number of potential biosynthetic capabilities uniquely enabled by these powerful catalysts (110 references)

    Design of surface-active artificial enzyme particles to stabilize Pickering emulsions for high-performance biphasic biocatalysis

    Get PDF
    © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Surface-active artificial enzymes (SAEs) are designed and constructed by a general and novel strategy. These SAEs can simultaneously stabilize Pickering emulsions and catalyze biphasic biotransformation with superior enzymatic stability and good re-usability; for example, for the interfacial conversion of hydrophobic p-nitrophenyl butyrate into yellow water-soluble p-nitrophenolate catalyzed by esterase-mimic SAE

    Development of Digestive Enzymes Activity on Black Saddled Coral Grouper (Plectropomus Laevis) Larvae

    Get PDF
    Protease, amylase, and lipase enzymes were used as biological indicators to measure larvae's food digestion. The aim of this study was to describe digestive enzyme activity development of black saddled coral grouper (Plectropomus laevis) larvae. The just hatching larvae were reared in concrete tank 2x3x1 m3 with stocking density of 10 larvae/L. In the larval rearing media were added with Nanochloropsis oculata at 105 cel/ml started from 1 day old (D-1). The larvae was fed with rotifer (Brachionus rotundiformis) at 10-20 ind/ml started from D-2 and artificial diet from D-10. To analyze the protease, amylase, and lipase enzymes activities, samples were taken 0.5-1 g or about 1000 larvae on D-3, D-4, D-6, D-8 and 500 larvae on D-10, D-12, D-16, and D-20. The result showed that the protease, amylase, and lipase enzymes activity were positively correlated with the growth. Digestive enzymes activity was increased when larvae started on endogenous feeding (D-3), become down on D-6, stable on D-8 to D-10, increased on D-12, and reached the highest level on D-16. Digestive enzymes activity was higher when larvae started feeding with artificial diet compared to the larvae before feeding with artificial diet

    Artificial Photosynthesis Would Unify the Electricity-Carbohydrate-Hydrogen Cycle for Sustainability

    Get PDF
    Sustainable development requires balanced integration of four basic human needs – air (O2/CO2), water, food, and energy. To solve key challenges, such as CO2 fixation, electricity storage, food production, transportation fuel production, water conservation or maintaining an ecosystem for space travel, we wish to suggest the electricity-carbohydrate-hydrogen (ECHo) cycle, where electricity is a universal energy carrier, hydrogen is a clean electricity carrier, and carbohydrate is a high-energy density hydrogen (14.8 H2 mass% or 11-14 MJ electricity output/kg)carrier plus a food and feed source. Each element of this cycle can be converted to the other reversibly & efficiently depending on resource availability, needs, and costs. In order to implement such cycle, here we propose to fix carbon dioxide by electricity or hydrogen to carbohydrate (starch) plus ethanol by cell-free synthetic biology approaches. According to knowledge in the literature, the proposed artificial photosynthesis must be operative. Therefore, collaborations are urgently needed to solve several technological bottlenecks before large-scale implementation

    The effects of Moina artificial diet and nutrase xyla supplemented artificial diet on growth and survival of Clarias gariepinus larvae

    Get PDF
    An experiment was carried out to investigate the effects of Moina, artificial diet (55% CP) and nutrase xyla supplemented artificial diet on growth performances and survival rates of Clarias gariepinus larvae. A combination of Moina and artificial diet (with or without nutrass xyla) resulted in higher growth performance and survival rates during a 12-day nursing time with specific growth rates of 30.04-32.15% d super(-1) and survival rates of 87.5-90%. Best growth performance and survival rate was obtained with a combination of Moina and artificial diet supplemented with nutrias xylem. Feeding of Moina and artificial diet supplemented, with nutrias xyla alone to the larval led to a lower growth performance of 25.60-27.04% d super(-1). However, the survival rate of Monia of larvae fed a combination of Moina and artificial diet (with or without nutrias xylem supplementation) artificial diet without nutrias xylem addition proved relatively less suitable for larval rearing of Clarias gariepinus owing to a low survival rate of 69% and growth performance of 19.7% d super(-1). This study showed the feasibility of feeding a combination of Moina and nutrias xylem supplemented artificial diet to the larvae of Clarias gariepinu

    Transcriptomic responses of the olive fruit fly Bactrocera oleae and its symbiont Candidatus Erwinia dacicola to olive feeding

    Get PDF
    The olive fruit fly, Bactrocera oleae, is the most destructive pest of olive orchards worldwide. The monophagous larva has the unique capability of feeding on olive mesocarp, coping with high levels of phenolic compounds and utilizing non-hydrolyzed proteins present, particularly in the unripe, green olives. On the molecular level, the interaction between B. oleae and olives has not been investigated as yet. Nevertheless, it has been associated with the gut obligate symbiotic bacterium Candidatus Erwinia dacicola. Here, we used a B. oleae microarray to analyze the gene expression of larvae during their development in artificial diet, unripe (green) and ripe (black) olives. The expression profiles of Ca. E. dacicola were analyzed in parallel, using the Illumina platform. Several genes were found overexpressed in the olive fly larvae when feeding in green olives. Among these, a number of genes encoding detoxification and digestive enzymes, indicating a potential association with the ability of B. oleae to cope with green olives. In addition, a number of biological processes seem to be activated in Ca. E. dacicola during the development of larvae in olives, with the most notable being the activation of amino-acid metabolism

    Programs as Polypeptides

    Full text link
    We describe a visual programming language for defining behaviors manifested by reified actors in a 2D virtual world that can be compiled into programs comprised of sequences of combinators that are themselves reified as actors. This makes it possible to build programs that build programs from components of a few fixed types delivered by diffusion using processes that resemble chemistry as much as computation.Comment: in European Conference on Artificial Life (ECAL '15), York, UK, 201

    Chemical communication between synthetic and natural cells: a possible experimental design

    Get PDF
    The bottom-up construction of synthetic cells is one of the most intriguing and interesting research arenas in synthetic biology. Synthetic cells are built by encapsulating biomolecules inside lipid vesicles (liposomes), allowing the synthesis of one or more functional proteins. Thanks to the in situ synthesized proteins, synthetic cells become able to perform several biomolecular functions, which can be exploited for a large variety of applications. This paves the way to several advanced uses of synthetic cells in basic science and biotechnology, thanks to their versatility, modularity, biocompatibility, and programmability. In the previous WIVACE (2012) we presented the state-of-the-art of semi-synthetic minimal cell (SSMC) technology and introduced, for the first time, the idea of chemical communication between synthetic cells and natural cells. The development of a proper synthetic communication protocol should be seen as a tool for the nascent field of bio/chemical-based Information and Communication Technologies (bio-chem-ICTs) and ultimately aimed at building soft-wet-micro-robots. In this contribution (WIVACE, 2013) we present a blueprint for realizing this project, and show some preliminary experimental results. We firstly discuss how our research goal (based on the natural capabilities of biological systems to manipulate chemical signals) finds a proper place in the current scientific and technological contexts. Then, we shortly comment on the experimental approaches from the viewpoints of (i) synthetic cell construction, and (ii) bioengineering of microorganisms, providing up-to-date results from our laboratory. Finally, we shortly discuss how autopoiesis can be used as a theoretical framework for defining synthetic minimal life, minimal cognition, and as bridge between synthetic biology and artificial intelligence.Comment: In Proceedings Wivace 2013, arXiv:1309.712
    corecore