272 research outputs found

    Survey analysis for optimization algorithms applied to electroencephalogram

    Get PDF
    This paper presents a survey for optimization approaches that analyze and classify Electroencephalogram (EEG) signals. The automatic analysis of EEG presents a significant challenge due to the high-dimensional data volume. Optimization algorithms seek to achieve better accuracy by selecting practical features and reducing unwanted features. Forty-seven reputable research papers are provided in this work, emphasizing the developed and executed techniques divided into seven groups based on the applied optimization algorithm particle swarm optimization (PSO), ant colony optimization (ACO), artificial bee colony (ABC), grey wolf optimizer (GWO), Bat, Firefly, and other optimizer approaches). The main measures to analyze this paper are accuracy, precision, recall, and F1-score assessment. Several datasets have been utilized in the included papers like EEG Bonn University, CHB-MIT, electrocardiography (ECG) dataset, and other datasets. The results have proven that the PSO and GWO algorithms have achieved the highest accuracy rate of around 99% compared with other techniques

    Intrusion Detection: Embedded Software Machine Learning and Hardware Rules Based Co-Designs

    Get PDF
    Security of innovative technologies in future generation networks such as (Cyber Physical Systems (CPS) and Wi-Fi has become a critical universal issue for individuals, economy, enterprises, organizations and governments. The rate of cyber-attacks has increased dramatically, and the tactics used by the attackers are continuing to evolve and have become ingenious during the attacks. Intrusion Detection is one of the solutions against these attacks. One approach in designing an intrusion detection system (IDS) is software-based machine learning. Such approach can predict and detect threats before they result in major security incidents. Moreover, despite the considerable research in machine learning based designs, there is still a relatively small body of literature that is concerned with imbalanced class distributions from the intrusion detection system perspective. In addition, it is necessary to have an effective performance metric that can compare multiple multi-class as well as binary-class systems with respect to class distribution. Furthermore, the expectant detection techniques must have the ability to identify real attacks from random defects, ingrained defects in the design, misconfigurations of the system devices, system faults, human errors, and software implementation errors. Moreover, a lightweight IDS that is small, real-time, flexible and reconfigurable enough to be used as permanent elements of the system's security infrastructure is essential. The main goal of the current study is to design an effective and accurate intrusion detection framework with minimum features that are more discriminative and representative. Three publicly available datasets representing variant networking environments are adopted which also reflect realistic imbalanced class distributions as well as updated attack patterns. The presented intrusion detection framework is composed of three main modules: feature selection and dimensionality reduction, handling imbalanced class distributions, and classification. The feature selection mechanism utilizes searching algorithms and correlation based subset evaluation techniques, whereas the feature dimensionality reduction part utilizes principal component analysis and auto-encoder as an instance of deep learning. Various classifiers, including eight single-learning classifiers, four ensemble classifiers, one stacked classifier, and five imbalanced class handling approaches are evaluated to identify the most efficient and accurate one(s) for the proposed intrusion detection framework. A hardware-based approach to detect malicious behaviors of sensors and actuators embedded in medical devices, in which the safety of the patient is critical and of utmost importance, is additionally proposed. The idea is based on a methodology that transforms a device's behavior rules into a state machine to build a Behavior Specification Rules Monitoring (BSRM) tool for four medical devices. Simulation and synthesis results demonstrate that the BSRM tool can effectively identify the expected normal behavior of the device and detect any deviation from its normal behavior. The performance of the BSRM approach has also been compared with a machine learning based approach for the same problem. The FPGA module of the BSRM can be embedded in medical devices as an IDS and can be further integrated with the machine learning based approach. The reconfigurable nature of the FPGA chip adds an extra advantage to the designed model in which the behavior rules can be easily updated and tailored according to the requirements of the device, patient, treatment algorithm, and/or pervasive healthcare application

    Metaheuristic design of feedforward neural networks: a review of two decades of research

    Get PDF
    Over the past two decades, the feedforward neural network (FNN) optimization has been a key interest among the researchers and practitioners of multiple disciplines. The FNN optimization is often viewed from the various perspectives: the optimization of weights, network architecture, activation nodes, learning parameters, learning environment, etc. Researchers adopted such different viewpoints mainly to improve the FNN's generalization ability. The gradient-descent algorithm such as backpropagation has been widely applied to optimize the FNNs. Its success is evident from the FNN's application to numerous real-world problems. However, due to the limitations of the gradient-based optimization methods, the metaheuristic algorithms including the evolutionary algorithms, swarm intelligence, etc., are still being widely explored by the researchers aiming to obtain generalized FNN for a given problem. This article attempts to summarize a broad spectrum of FNN optimization methodologies including conventional and metaheuristic approaches. This article also tries to connect various research directions emerged out of the FNN optimization practices, such as evolving neural network (NN), cooperative coevolution NN, complex-valued NN, deep learning, extreme learning machine, quantum NN, etc. Additionally, it provides interesting research challenges for future research to cope-up with the present information processing era

    Fault Detection and Diagnosis with Imbalanced and Noisy Data: A Hybrid Framework for Rotating Machinery

    Full text link
    Fault diagnosis plays an essential role in reducing the maintenance costs of rotating machinery manufacturing systems. In many real applications of fault detection and diagnosis, data tend to be imbalanced, meaning that the number of samples for some fault classes is much less than the normal data samples. At the same time, in an industrial condition, accelerometers encounter high levels of disruptive signals and the collected samples turn out to be heavily noisy. As a consequence, many traditional Fault Detection and Diagnosis (FDD) frameworks get poor classification performances when dealing with real-world circumstances. Three main solutions have been proposed in the literature to cope with this problem: (1) the implementation of generative algorithms to increase the amount of under-represented input samples, (2) the employment of a classifier being powerful to learn from imbalanced and noisy data, (3) the development of an efficient data pre-processing including feature extraction and data augmentation. This paper proposes a hybrid framework which uses the three aforementioned components to achieve an effective signal-based FDD system for imbalanced conditions. Specifically, it first extracts the fault features, using Fourier and wavelet transforms to make full use of the signals. Then, it employs Wasserstein Generative Adversarial Networks (WGAN) to generate synthetic samples to populate the rare fault class and enhance the training set. Moreover, to achieve a higher performance a novel combination of Convolutional Long Short-term Memory (CLSTM) and Weighted Extreme Learning Machine (WELM) is proposed. To verify the effectiveness of the developed framework, different datasets settings on different imbalance severities and noise degrees were used. The comparative results demonstrate that in different scenarios GAN-CLSTM-ELM outperforms the other state-of-the-art FDD frameworks.Comment: 23 pages, 11 figure

    A Literature Review of Fault Diagnosis Based on Ensemble Learning

    Get PDF
    The accuracy of fault diagnosis is an important indicator to ensure the reliability of key equipment systems. Ensemble learning integrates different weak learning methods to obtain stronger learning and has achieved remarkable results in the field of fault diagnosis. This paper reviews the recent research on ensemble learning from both technical and field application perspectives. The paper summarizes 87 journals in recent web of science and other academic resources, with a total of 209 papers. It summarizes 78 different ensemble learning based fault diagnosis methods, involving 18 public datasets and more than 20 different equipment systems. In detail, the paper summarizes the accuracy rates, fault classification types, fault datasets, used data signals, learners (traditional machine learning or deep learning-based learners), ensemble learning methods (bagging, boosting, stacking and other ensemble models) of these fault diagnosis models. The paper uses accuracy of fault diagnosis as the main evaluation metrics supplemented by generalization and imbalanced data processing ability to evaluate the performance of those ensemble learning methods. The discussion and evaluation of these methods lead to valuable research references in identifying and developing appropriate intelligent fault diagnosis models for various equipment. This paper also discusses and explores the technical challenges, lessons learned from the review and future development directions in the field of ensemble learning based fault diagnosis and intelligent maintenance

    Cost-Sensitive Metaheuristic Optimization-Based Neural Network with Ensemble Learning for Financial Distress Prediction

    Get PDF
    Financial distress prediction is crucial in the financial domain because of its implications for banks, businesses, and corporations. Serious financial losses may occur because of poor financial distress prediction. As a result, significant efforts have been made to develop prediction models that can assist decision-makers to anticipate events before they occur and avoid bankruptcy, thereby helping to improve the quality of such tasks. Because of the usual highly imbalanced distribution of data, financial distress prediction is a challenging task. Hence, a wide range of methods and algorithms have been developed over recent decades to address the classification of imbalanced datasets. Metaheuristic optimization-based artificial neural networks have shown exciting results in a variety of applications, as well as classification problems. However, less consideration has been paid to using a cost sensitivity fitness function in metaheuristic optimization-based artificial neural networks to solve the financial distress prediction problem. In this work, we propose ENS_PSONNcost and ENS_CSONNcost: metaheuristic optimization-based artificial neural networks that utilize a particle swarm optimizer and a competitive swarm optimizer and five cost sensitivity fitness functions as the base learners in a majority voting ensemble learning paradigm. Three extremely imbalanced datasets from Spanish, Taiwanese, and Polish companies were considered to avoid dataset bias. The results showed significant improvements in the g-mean (the geometric mean of sensitivity and specificity) metric and the F1 score (the harmonic mean of precision and sensitivity) while maintaining adequately high accuracy.Spanish Government PID2020-115570GB-C2

    Efficient Learning Machines

    Get PDF
    Computer scienc

    Classifying spam emails using agglomerative hierarchical clustering and a topic-based approach

    Get PDF
    [EN] Spam emails are unsolicited, annoying and sometimes harmful messages which may contain malware, phishing or hoaxes. Unlike most studies that address the design of efficient anti-spam filters, we approach the spam email problem from a different and novel perspective. Focusing on the needs of cybersecurity units, we follow a topic-based approach for addressing the classification of spam email into multiple categories. We propose SPEMC-15K-E and SPEMC-15K-S, two novel datasets with approximately 15K emails each in English and Spanish, respectively, and we label them using agglomerative hierarchical clustering into 11 classes. We evaluate 16 pipelines, combining four text representation techniques -Term Frequency-Inverse Document Frequency (TF-IDF), Bag of Words, Word2Vec and BERT- and four classifiers: Support Vector Machine, Näive Bayes, Random Forest and Logistic Regression. Experimental results show that the highest performance is achieved with TF-IDF and LR for the English dataset, with a F1 score of 0.953 and an accuracy of 94.6%, and while for the Spanish dataset, TF-IDF with NB yields a F1 score of 0.945 and 98.5% accuracy. Regarding the processing time, TF-IDF with LR leads to the fastest classification, processing an English and Spanish spam email in 2ms and 2.2ms on average, respectively.S
    corecore