507 research outputs found

    Evolution of self-maintaining cellular information processing networks

    Get PDF
    We examine the role of self-maintenance (collective autocatalysis) in the evolution of computational biochemical networks. In primitive proto-cells (lacking separate genetic machinery) self-maintenance is a necessary condition for the direct reproduction and inheritance of what we here term Cellular Information Processing Networks (CIPNs). Indeed, partially reproduced or defective CIPNs may generally lead to malfunctioning or premature death of affected cells. We explore the interaction of this self-maintenance property with the evolution and adaptation of CIPNs capable of distinct information processing abilities. We present an evolutionary simulation platform capable of evolving artificial CIPNs from a bottom-up perspective. This system is an agent-based multi-level selectional Artificial Chemistry (AC) which employs a term rewriting system called the Molecular Classifier System (MCS). The latter is derived from the Holland broadcast language formalism. Using this system, we successfully evolve an artificial CIPN to improve performance on a simple pre-specified information processing task whilst subject to the constraint of continuous self-maintenance. We also describe the evolution of self-maintaining, crosstalking and multitasking, CIPNs exhibiting a higher level of topological and functional complexity. This proof of concept aims at contributing to the understanding of the open-ended evolutionary growth of complexity in artificial systems

    Artificial symbiogenesis and differing reproduction rates

    Get PDF
    Symbiosis is the phenomenon in which organisms of different species live together in close association. Symbiogenesis is the name given to the process by which symbiotic partners combine and unify. This letter reconsiders previous work using the NKCS model of coevolution to explore symbiogenesis. In particular, the role of different replication rates between the coevolving partners is considered. This is shown to provide a broader scope for the emergence of endosymbioses and subsequent horizontal gene transfers. © 2009 Massachusetts Institute of Technology

    Symbiogenesis in learning classifier systems

    Get PDF
    Abstract Symbiosis is the phenomenon in which organisms of different species live together in close association, resulting in a raised level of fitness for one or more of the organisms. Symbiogenesis is the name given to the process by which symbiotic partners combine and unify, that is, become genetically linked, giving rise to new morphologies and physiologies evolutionarily more advanced than their constituents. The importance of this process in the evolution of complexity is now well established. Learning classifier systems are a machine learning technique that uses both evolutionary computing techniques and reinforcement learning to develop a population of cooperative rules to solve a given task. In this article we examine the use of symbiogenesis within the classifier system rule base to improve their performance. Results show that incorporating simple rule linkage does not give any benefits. The concept of (temporal) encapsulation is then added to the symbiotic rules and shown to improve performance in ambiguous/non-Markov environments

    On cellular darwinism: Mitochondria

    Get PDF
    © 2016 Massachusetts Institute of Technology. The significant role of mitochondria within cells is becoming increasingly clear. This letter uses the NKCS model of coupled fitness landscapes to explore aspects of organelle-nucleus coevolution. The phenomenon of mitochondrial diversity is allowed to emerge under a simple intracellular evolutionary process, including varying the relative rate of evolution by the organelle. It is shown how the conditions for the maintenance of more than one genetic variant of mitochondria are similar to those previously suggested as needed for the original symbiotic origins of the relationship using the NKCS model

    Reticulate evolution everywhere

    Get PDF
    info:eu-repo/semantics/publishedVersio

    Symbiotic Tabu Search

    Get PDF

    The Evolution of Diversity

    Get PDF
    Since the beginning of time, the pre-biological and the biological world have seen a steady increase in complexity of form and function based on a process of combination and re-combination. The current modern synthesis of evolution known as the neo-Darwinian theory emphasises population genetics and does not explain satisfactorily all other occurrences of evolutionary novelty. The authors suggest that symbiosis and hybridisation and the more obscure processes such as polyploidy, chimerism and lateral transfer are mostly overlooked and not featured sufficiently within evolutionary theory. They suggest, therefore, a revision of the existing theory including its language, to accommodate the scientific findings of recent decades

    Reticulate Evolution: Symbiogenesis, Lateral Gene Transfer, Hybridization and Infectious heredity

    Get PDF
    info:eu-repo/semantics/publishedVersio
    corecore