13,425 research outputs found

    Artificial neural networks in image processing for early detection of breast cancer

    Get PDF
    Medical imaging techniques have widely been in use in the diagnosis and detection of breast cancer. The drawback of applying these techniques is the large time consumption in the manual diagnosis of each image pattern by a professional radiologist. Automated classifiers could substantially upgrade the diagnosis process, in terms of both accuracy and time requirement by distinguishing benign and malignant patterns automatically. Neural network (NN) plays an important role in this respect, especially in the application of breast cancer detection. Despite the large number of publications that describe the utilization of NN in various medical techniques, only a few reviews are available that guide the development of these algorithms to enhance the detection techniques with respect to specificity and sensitivity. The purpose of this review is to analyze the contents of recently published literature with special attention to techniques and states of the art of NN in medical imaging. We discuss the usage of NN in four different medical imaging applications to show that NN is not restricted to few areas of medicine. Types of NN used, along with the various types of feeding data, have been reviewed. We also address hybrid NN adaptation in breast cancer detection

    Cancer diagnosis using deep learning: A bibliographic review

    Get PDF
    In this paper, we first describe the basics of the field of cancer diagnosis, which includes steps of cancer diagnosis followed by the typical classification methods used by doctors, providing a historical idea of cancer classification techniques to the readers. These methods include Asymmetry, Border, Color and Diameter (ABCD) method, seven-point detection method, Menzies method, and pattern analysis. They are used regularly by doctors for cancer diagnosis, although they are not considered very efficient for obtaining better performance. Moreover, considering all types of audience, the basic evaluation criteria are also discussed. The criteria include the receiver operating characteristic curve (ROC curve), Area under the ROC curve (AUC), F1 score, accuracy, specificity, sensitivity, precision, dice-coefficient, average accuracy, and Jaccard index. Previously used methods are considered inefficient, asking for better and smarter methods for cancer diagnosis. Artificial intelligence and cancer diagnosis are gaining attention as a way to define better diagnostic tools. In particular, deep neural networks can be successfully used for intelligent image analysis. The basic framework of how this machine learning works on medical imaging is provided in this study, i.e., pre-processing, image segmentation and post-processing. The second part of this manuscript describes the different deep learning techniques, such as convolutional neural networks (CNNs), generative adversarial models (GANs), deep autoencoders (DANs), restricted Boltzmann’s machine (RBM), stacked autoencoders (SAE), convolutional autoencoders (CAE), recurrent neural networks (RNNs), long short-term memory (LTSM), multi-scale convolutional neural network (M-CNN), multi-instance learning convolutional neural network (MIL-CNN). For each technique, we provide Python codes, to allow interested readers to experiment with the cited algorithms on their own diagnostic problems. The third part of this manuscript compiles the successfully applied deep learning models for different types of cancers. Considering the length of the manuscript, we restrict ourselves to the discussion of breast cancer, lung cancer, brain cancer, and skin cancer. The purpose of this bibliographic review is to provide researchers opting to work in implementing deep learning and artificial neural networks for cancer diagnosis a knowledge from scratch of the state-of-the-art achievements

    An Efficient Automatic Mass Classification Method In Digitized Mammograms Using Artificial Neural Network

    Full text link
    In this paper we present an efficient computer aided mass classification method in digitized mammograms using Artificial Neural Network (ANN), which performs benign-malignant classification on region of interest (ROI) that contains mass. One of the major mammographic characteristics for mass classification is texture. ANN exploits this important factor to classify the mass into benign or malignant. The statistical textural features used in characterizing the masses are mean, standard deviation, entropy, skewness, kurtosis and uniformity. The main aim of the method is to increase the effectiveness and efficiency of the classification process in an objective manner to reduce the numbers of false-positive of malignancies. Three layers artificial neural network (ANN) with seven features was proposed for classifying the marked regions into benign and malignant and 90.91% sensitivity and 83.87% specificity is achieved that is very much promising compare to the radiologist's sensitivity 75%.Comment: 13 pages, 10 figure

    Medical imaging analysis with artificial neural networks

    Get PDF
    Given that neural networks have been widely reported in the research community of medical imaging, we provide a focused literature survey on recent neural network developments in computer-aided diagnosis, medical image segmentation and edge detection towards visual content analysis, and medical image registration for its pre-processing and post-processing, with the aims of increasing awareness of how neural networks can be applied to these areas and to provide a foundation for further research and practical development. Representative techniques and algorithms are explained in detail to provide inspiring examples illustrating: (i) how a known neural network with fixed structure and training procedure could be applied to resolve a medical imaging problem; (ii) how medical images could be analysed, processed, and characterised by neural networks; and (iii) how neural networks could be expanded further to resolve problems relevant to medical imaging. In the concluding section, a highlight of comparisons among many neural network applications is included to provide a global view on computational intelligence with neural networks in medical imaging

    Abnormality Detection in Mammography using Deep Convolutional Neural Networks

    Full text link
    Breast cancer is the most common cancer in women worldwide. The most common screening technology is mammography. To reduce the cost and workload of radiologists, we propose a computer aided detection approach for classifying and localizing calcifications and masses in mammogram images. To improve on conventional approaches, we apply deep convolutional neural networks (CNN) for automatic feature learning and classifier building. In computer-aided mammography, deep CNN classifiers cannot be trained directly on full mammogram images because of the loss of image details from resizing at input layers. Instead, our classifiers are trained on labelled image patches and then adapted to work on full mammogram images for localizing the abnormalities. State-of-the-art deep convolutional neural networks are compared on their performance of classifying the abnormalities. Experimental results indicate that VGGNet receives the best overall accuracy at 92.53\% in classifications. For localizing abnormalities, ResNet is selected for computing class activation maps because it is ready to be deployed without structural change or further training. Our approach demonstrates that deep convolutional neural network classifiers have remarkable localization capabilities despite no supervision on the location of abnormalities is provided.Comment: 6 page
    corecore