62 research outputs found

    Learning body models: from humans to humanoids

    Full text link
    Humans and animals excel in combining information from multiple sensory modalities, controlling their complex bodies, adapting to growth, failures, or using tools. These capabilities are also highly desirable in robots. They are displayed by machines to some extent. Yet, the artificial creatures are lagging behind. The key foundation is an internal representation of the body that the agent - human, animal, or robot - has developed. The mechanisms of operation of body models in the brain are largely unknown and even less is known about how they are constructed from experience after birth. In collaboration with developmental psychologists, we conducted targeted experiments to understand how infants acquire first "sensorimotor body knowledge". These experiments inform our work in which we construct embodied computational models on humanoid robots that address the mechanisms behind learning, adaptation, and operation of multimodal body representations. At the same time, we assess which of the features of the "body in the brain" should be transferred to robots to give rise to more adaptive and resilient, self-calibrating machines. We extend traditional robot kinematic calibration focusing on self-contained approaches where no external metrology is needed: self-contact and self-observation. Problem formulation allowing to combine several ways of closing the kinematic chain simultaneously is presented, along with a calibration toolbox and experimental validation on several robot platforms. Finally, next to models of the body itself, we study peripersonal space - the space immediately surrounding the body. Again, embodied computational models are developed and subsequently, the possibility of turning these biologically inspired representations into safe human-robot collaboration is studied.Comment: 34 pages, 5 figures. Habilitation thesis, Faculty of Electrical Engineering, Czech Technical University in Prague (2021

    Platformer level design for player believability

    Get PDF
    Player believability is often defined as the ability of a game playing character to convince an observer that it is being controlled by a human. The agent's behavior is often assumed to be the main contributor to the character's believability. In this paper we reframe this core assumption and instead focus on the impact of the game environment and aspects of game design (such as level design) on the believability of the game character. To investigate the relationship between game content and believability we crowdsource rank-based annotations from subjects that view playthrough videos of various AI and human controlled agents in platformer levels of dissimilar characteristics. For this initial study we use a variant of the well-known Super Mario Bros game. We build support vector machine models of reported believability based on gameplay and level features which are extracted from the videos. The highest performing model predicts perceived player believability of a character with an accuracy of 73.31%, on average, and implies a direct relationship between level features and player believability.We would like to thank all participants of the crowdsourcing experiment. This work has been supported in part by the FP7 Marie Curie CIG project AutoGameDesign (630665).peer-reviewe

    A Survey on FPGA-Based Sensor Systems: Towards Intelligent and Reconfigurable Low-Power Sensors for Computer Vision, Control and Signal Processing

    Get PDF
    The current trend in the evolution of sensor systems seeks ways to provide more accuracy and resolution, while at the same time decreasing the size and power consumption. The use of Field Programmable Gate Arrays (FPGAs) provides specific reprogrammable hardware technology that can be properly exploited to obtain a reconfigurable sensor system. This adaptation capability enables the implementation of complex applications using the partial reconfigurability at a very low-power consumption. For highly demanding tasks FPGAs have been favored due to the high efficiency provided by their architectural flexibility (parallelism, on-chip memory, etc.), reconfigurability and superb performance in the development of algorithms. FPGAs have improved the performance of sensor systems and have triggered a clear increase in their use in new fields of application. A new generation of smarter, reconfigurable and lower power consumption sensors is being developed in Spain based on FPGAs. In this paper, a review of these developments is presented, describing as well the FPGA technologies employed by the different research groups and providing an overview of future research within this field.The research leading to these results has received funding from the Spanish Government and European FEDER funds (DPI2012-32390), the Valencia Regional Government (PROMETEO/2013/085) and the University of Alicante (GRE12-17)

    UCT-Enhanced Deep Convolutional Neural Networks for Move Recommendation in Go

    Get PDF
    Deep networks have been proved to be useful in predicting moves of human Go experts. Combining Upper Confidence bounds applied to Trees (UCT) with a large deep network creates an even more powerful AI in playing Go. Our project introduced a new feature, board patterns at the end of a game, used as inputs to the network. By adding the new feature, our model correctly predicted the experts’ move in 18% of the positions, compared to 6% without this feature. In practice, although the board pattern at the end of the game is invisible to Go players until the end of the game, collecting statistics during each simulation in UCT can approximate the board pattern at the end of game. With the dataset generated by UCT simulation, the network correctly predicted the experts’ move in 9% of positions

    Photonic reservoir computing with a network of coupled semiconductor optical amplifiers

    Get PDF
    corecore