27 research outputs found

    Identification and Classification of Player Types in Massive Multiplayer Online Games using Avatar Behavior

    Get PDF
    The purpose of our research is to develop an improved methodology for classifying players (identifying deviant players such as terrorists) through multivariate analysis of data from avatar characteristics and behaviors in massive multiplayer online games (MMOGs). To build our classification models, we developed three significant enhancements to the standard Generalized Regression Neural Networks (GRNN) modeling method. The first enhancement is a feature selection technique based on GRNNs, allowing us to tailor our feature set to be best modeled by GRNNs. The second enhancement is a hybrid GRNN which allows each feature to be modeled by a GRNN tailored to its data type. The third enhancement is a spread estimation technique for large data sets that is faster than exhaustive searches, yet more accurate than a standard heuristic. We applied our new techniques to a set of data from the MMOG, Everquest II, to identify deviant players (\u27gold farmers\u27). The identification of gold farmers is similar to labeling terrorists in that the ratio of gold farmer to standard player is extremely small, and the in-game behaviors for a gold farmer have detectable differences from a standard player. Our results were promising given the difficulty of the classification process, primarily the extremely unbalanced data set with a small number of observations from the class of interest. As a screening tool our method identifies a significantly reduced set of avatars and associated players with a much improved probability of containing a number of players displaying deviant behaviors. With further efforts at improving computing efficiencies to allow inclusion of additional features and observations with our framework, we expect even better results

    Application of information theory and statistical learning to anomaly detection

    Get PDF
    In today\u27s highly networked world, computer intrusions and other attacks area constant threat. The detection of such attacks, especially attacks that are new or previously unknown, is important to secure networks and computers. A major focus of current research efforts in this area is on anomaly detection.;In this dissertation, we explore applications of information theory and statistical learning to anomaly detection. Specifically, we look at two difficult detection problems in network and system security, (1) detecting covert channels, and (2) determining if a user is a human or bot. We link both of these problems to entropy, a measure of randomness information content, or complexity, a concept that is central to information theory. The behavior of bots is low in entropy when tasks are rigidly repeated or high in entropy when behavior is pseudo-random. In contrast, human behavior is complex and medium in entropy. Similarly, covert channels either create regularity, resulting in low entropy, or encode extra information, resulting in high entropy. Meanwhile, legitimate traffic is characterized by complex interdependencies and moderate entropy. In addition, we utilize statistical learning algorithms, Bayesian learning, neural networks, and maximum likelihood estimation, in both modeling and detecting of covert channels and bots.;Our results using entropy and statistical learning techniques are excellent. By using entropy to detect covert channels, we detected three different covert timing channels that were not detected by previous detection methods. Then, using entropy and Bayesian learning to detect chat bots, we detected 100% of chat bots with a false positive rate of only 0.05% in over 1400 hours of chat traces. Lastly, using neural networks and the idea of human observational proofs to detect game bots, we detected 99.8% of game bots with no false positives in 95 hours of traces. Our work shows that a combination of entropy measures and statistical learning algorithms is a powerful and highly effective tool for anomaly detection

    Enhancing trustability in MMOGs environments

    Get PDF
    Massively Multiplayer Online Games (MMOGs; e.g., World of Warcraft), virtual worlds (VW; e.g., Second Life), social networks (e.g., Facebook) strongly demand for more autonomic, security, and trust mechanisms in a way similar to humans do in the real life world. As known, this is a difficult matter because trusting in humans and organizations depends on the perception and experience of each individual, which is difficult to quantify or measure. In fact, these societal environments lack trust mechanisms similar to those involved in humans-to-human interactions. Besides, interactions mediated by compute devices are constantly evolving, requiring trust mechanisms that keep the pace with the developments and assess risk situations. In VW/MMOGs, it is widely recognized that users develop trust relationships from their in-world interactions with others. However, these trust relationships end up not being represented in the data structures (or databases) of such virtual worlds, though they sometimes appear associated to reputation and recommendation systems. In addition, as far as we know, the user is not provided with a personal trust tool to sustain his/her decision making while he/she interacts with other users in the virtual or game world. In order to solve this problem, as well as those mentioned above, we propose herein a formal representation of these personal trust relationships, which are based on avataravatar interactions. The leading idea is to provide each avatar-impersonated player with a personal trust tool that follows a distributed trust model, i.e., the trust data is distributed over the societal network of a given VW/MMOG. Representing, manipulating, and inferring trust from the user/player point of view certainly is a grand challenge. When someone meets an unknown individual, the question is “Can I trust him/her or not?”. It is clear that this requires the user to have access to a representation of trust about others, but, unless we are using an open source VW/MMOG, it is difficult —not to say unfeasible— to get access to such data. Even, in an open source system, a number of users may refuse to pass information about its friends, acquaintances, or others. Putting together its own data and gathered data obtained from others, the avatar-impersonated player should be able to come across a trust result about its current trustee. For the trust assessment method used in this thesis, we use subjective logic operators and graph search algorithms to undertake such trust inference about the trustee. The proposed trust inference system has been validated using a number of OpenSimulator (opensimulator.org) scenarios, which showed an accuracy increase in evaluating trustability of avatars. Summing up, our proposal aims thus to introduce a trust theory for virtual worlds, its trust assessment metrics (e.g., subjective logic) and trust discovery methods (e.g., graph search methods), on an individual basis, rather than based on usual centralized reputation systems. In particular, and unlike other trust discovery methods, our methods run at interactive rates.MMOGs (Massively Multiplayer Online Games, como por exemplo, World of Warcraft), mundos virtuais (VW, como por exemplo, o Second Life) e redes sociais (como por exemplo, Facebook) necessitam de mecanismos de confiança mais autónomos, capazes de assegurar a segurança e a confiança de uma forma semelhante à que os seres humanos utilizam na vida real. Como se sabe, esta não é uma questão fácil. Porque confiar em seres humanos e ou organizações depende da percepção e da experiência de cada indivíduo, o que é difícil de quantificar ou medir à partida. Na verdade, esses ambientes sociais carecem dos mecanismos de confiança presentes em interacções humanas presenciais. Além disso, as interacções mediadas por dispositivos computacionais estão em constante evolução, necessitando de mecanismos de confiança adequados ao ritmo da evolução para avaliar situações de risco. Em VW/MMOGs, é amplamente reconhecido que os utilizadores desenvolvem relações de confiança a partir das suas interacções no mundo com outros. No entanto, essas relações de confiança acabam por não ser representadas nas estruturas de dados (ou bases de dados) do VW/MMOG específico, embora às vezes apareçam associados à reputação e a sistemas de reputação. Além disso, tanto quanto sabemos, ao utilizador não lhe é facultado nenhum mecanismo que suporte uma ferramenta de confiança individual para sustentar o seu processo de tomada de decisão, enquanto ele interage com outros utilizadores no mundo virtual ou jogo. A fim de resolver este problema, bem como os mencionados acima, propomos nesta tese uma representação formal para essas relações de confiança pessoal, baseada em interacções avatar-avatar. A ideia principal é fornecer a cada jogador representado por um avatar uma ferramenta de confiança pessoal que segue um modelo de confiança distribuída, ou seja, os dados de confiança são distribuídos através da rede social de um determinado VW/MMOG. Representar, manipular e inferir a confiança do ponto de utilizador/jogador, é certamente um grande desafio. Quando alguém encontra um indivíduo desconhecido, a pergunta é “Posso confiar ou não nele?”. É claro que isto requer que o utilizador tenha acesso a uma representação de confiança sobre os outros, mas, a menos que possamos usar uma plataforma VW/MMOG de código aberto, é difícil — para não dizer impossível — obter acesso aos dados gerados pelos utilizadores. Mesmo em sistemas de código aberto, um número de utilizadores pode recusar partilhar informações sobre seus amigos, conhecidos, ou sobre outros. Ao juntar seus próprios dados com os dados obtidos de outros, o utilizador/jogador representado por um avatar deve ser capaz de produzir uma avaliação de confiança sobre o utilizador/jogador com o qual se encontra a interagir. Relativamente ao método de avaliação de confiança empregue nesta tese, utilizamos lógica subjectiva para a representação da confiança, e também operadores lógicos da lógica subjectiva juntamente com algoritmos de procura em grafos para empreender o processo de inferência da confiança relativamente a outro utilizador. O sistema de inferência de confiança proposto foi validado através de um número de cenários Open-Simulator (opensimulator.org), que mostrou um aumento na precisão na avaliação da confiança de avatares. Resumindo, a nossa proposta visa, assim, introduzir uma teoria de confiança para mundos virtuais, conjuntamente com métricas de avaliação de confiança (por exemplo, a lógica subjectiva) e em métodos de procura de caminhos de confiança (com por exemplo, através de métodos de pesquisa em grafos), partindo de uma base individual, em vez de se basear em sistemas habituais de reputação centralizados. Em particular, e ao contrário de outros métodos de determinação do grau de confiança, os nossos métodos são executados em tempo real

    온라인 게임에서 유저의 행태에 관한 연구

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 경영대학 경영학과, 2018. 2. 유병준.This dissertation consists of two essays on user behavior in online games. In the first essay, I identified multi-botting cheaters and measured their impacts using basic information in database such as user ID, playtime and item purchase record. I addressed the data availability issue and proposed a method for companies with limited data and resources. I also avoided large-scale transaction processing or complex development, which are fairly common in existing cheating detection methods. With respect to identifying cheaters, we used algorithms named DTW (Dynamic Time Warping) and JWD (Jaro–Winkler distance). I also measured the effects of using hacking tool by employing DID (Difference in Differences). My analysis results show some counter-intuitive results. Overall, cheaters constitute a minute part of users in terms of numbers – only about 0.25%. However, they hold approximately 12% of revenue. Furthermore, the usage of hacking tools causes a 102% and 79% increase in playtime and purchase respectively right after users start to use hacking tools. According to additional analysis, it could be shown that the positive effects of hacking tools are not just short-term. My granger causality test also reveals that cheating users activity does not affect other users' purchases or playtime trend. In the second essay, I propose a methodology to deal with churn prediction that meets two major purposes in the mobile casual game context. First, reducing the cost of data preparation, which is growing its importance in the big-data environment. Second, coming up with an algorithm that shows favorable performance comparable to that of the state-of-the-art. As a result, we succeed in greatly lowering the cost of the data preparation process by employing the sequence structure of the log data as it is. In addition, our sequence classification model based on CNN-LSTM shows superior results compared to the models of previous studies.Essay 1. Is Cheating Always Bad? A study of cheating identification and measurement of the effect 1 1. Introduction 2 2. Literature Review 8 3. Data 16 4. Hypotheses 17 5. Methodology 20 5.1 Cheating Identification 20 5.2 Measurement of Cheating Tool Usage Effect 28 6. Result 33 6.1 Cheating Identification 33 6.2 Measurement of Cheating Tool Usage Effect 33 7. Additional Analysis 35 7.1 Lifespan of Cheating Users 35 7.2 Granger Causality Test 36 8. Discussion and Conclusion 37 9. References 48 Essay 2. Churn Prediction in Mobile Casual Game: A Deep Sequence Classification Approach 61 1. Introduction 62 2. Definition of Churn 64 3. Related Works 65 4. Data 66 5. Methodology 66 5.1 Data Preparation 66 5.2 Prediction Model 71 6. Result and Discussion 74 7. References 77Docto

    An Information-Theoretic Framework for Consistency Maintenance in Distributed Interactive Applications

    Get PDF
    Distributed Interactive Applications (DIAs) enable geographically dispersed users to interact with each other in a virtual environment. A key factor to the success of a DIA is the maintenance of a consistent view of the shared virtual world for all the participants. However, maintaining consistent states in DIAs is difficult under real networks. State changes communicated by messages over such networks suffer latency leading to inconsistency across the application. Predictive Contract Mechanisms (PCMs) combat this problem through reducing the number of messages transmitted in return for perceptually tolerable inconsistency. This thesis examines the operation of PCMs using concepts and methods derived from information theory. This information theory perspective results in a novel information model of PCMs that quantifies and analyzes the efficiency of such methods in communicating the reduced state information, and a new adaptive multiple-model-based framework for improving consistency in DIAs. The first part of this thesis introduces information measurements of user behavior in DIAs and formalizes the information model for PCM operation. In presenting the information model, the statistical dependence in the entity state, which makes using extrapolation models to predict future user behavior possible, is evaluated. The efficiency of a PCM to exploit such predictability to reduce the amount of network resources required to maintain consistency is also investigated. It is demonstrated that from the information theory perspective, PCMs can be interpreted as a form of information reduction and compression. The second part of this thesis proposes an Information-Based Dynamic Extrapolation Model for dynamically selecting between extrapolation algorithms based on information evaluation and inferred network conditions. This model adapts PCM configurations to both user behavior and network conditions, and makes the most information-efficient use of the available network resources. In doing so, it improves PCM performance and consistency in DIAs

    Player Behavior Modeling In Video Games

    Get PDF
    Player Behavior Modeling in Video Games In this research, we study players’ interactions in video games to understand player behavior. The first part of the research concerns predicting the winner of a game, which we apply to StarCraft and Destiny. We manage to build models for these games which have reasonable to high accuracy. We also investigate which features of a game comprise strong predictors, which are economic features and micro commands for StarCraft, and key shooter performance metrics for Destiny, though features differ between different match types. The second part of the research concerns distinguishing playing styles of players of StarCraft and Destiny. We find that we can indeed recognize different styles of playing in these games, related to different match types. We relate these different playing styles to chance of winning, but find that there are no significant differences between the effects of different playing styles on winning. However, they do have an effect on the length of matches. In Destiny, we also investigate what player types are distinguished when we use Archetype Analysis on playing style features related to change in performance, and find that the archetypes correspond to different ways of learning. In the final part of the research, we investigate to what extent playing styles are related to different demographics, in particular to national cultures. We investigate this for four popular Massively multiplayer online games, namely Battlefield 4, Counter-Strike, Dota 2, and Destiny. We found that playing styles have relationship with nationality and cultural dimensions, and that there are clear similarities between the playing styles of similar cultures. In particular, the Hofstede dimension Individualism explained most of the variance in playing styles between national cultures for the games that we examined
    corecore