21 research outputs found

    Formal Introduction to Fuzzy Implications

    Get PDF
    SummaryIn the article we present in the Mizar system the catalogue of nine basic fuzzy implications, used especially in the theory of fuzzy sets. This work is a continuation of the development of fuzzy sets in Mizar; it could be used to give a variety of more general operations, and also it could be a good starting point towards the formalization of fuzzy logic (together with t-norms and t-conorms, formalized previously).Institute of Informatics, University of BiaƂystok, PolandMichaƂ BaczyƄski and Balasubramaniam Jayaram. Fuzzy Implications. Springer Publishing Company, Incorporated, 2008. doi:10.1007/978-3-540-69082-5.Adam Grabowski. Basic formal properties of triangular norms and conorms. Formalized Mathematics, 25(2):93–100, 2017. doi:10.1515/forma-2017-0009.Adam Grabowski. The formal construction of fuzzy numbers. Formalized Mathematics, 22(4):321–327, 2014. doi:10.2478/forma-2014-0032.Adam Grabowski. On the computer certification of fuzzy numbers. In M. Ganzha, L. Maciaszek, and M. Paprzycki, editors, 2013 Federated Conference on Computer Science and Information Systems (FedCSIS), Federated Conference on Computer Science and Information Systems, pages 51–54, 2013.Adam Grabowski. Lattice theory for rough sets – a case study with Mizar. Fundamenta Informaticae, 147(2–3):223–240, 2016. doi:10.3233/FI-2016-1406.Adam Grabowski and Magdalena Jastrzębska. Rough set theory from a math-assistant perspective. In Rough Sets and Intelligent Systems Paradigms, International Conference, RSEISP 2007, Warsaw, Poland, June 28–30, 2007, Proceedings, pages 152–161, 2007. doi:10.1007/978-3-540-73451-2_17.Adam Grabowski and Takashi Mitsuishi. Extending Formal Fuzzy Sets with Triangular Norms and Conorms, volume 642: Advances in Intelligent Systems and Computing, pages 176–187. Springer International Publishing, Cham, 2018. doi:10.1007/978-3-319-66824-6_16.Adam Grabowski and Takashi Mitsuishi. Initial comparison of formal approaches to fuzzy and rough sets. In Leszek Rutkowski, Marcin Korytkowski, Rafal Scherer, Ryszard Tadeusiewicz, Lotfi A. Zadeh, and Jacek M. Zurada, editors, Artificial Intelligence and Soft Computing - 14th International Conference, ICAISC 2015, Zakopane, Poland, June 14-18, 2015, Proceedings, Part I, volume 9119 of Lecture Notes in Computer Science, pages 160–171. Springer, 2015. doi:10.1007/978-3-319-19324-3_15.Adam Grabowski, Artur KorniƂowicz, and Adam Naumowicz. Four decades of Mizar. Journal of Automated Reasoning, 55(3):191–198, 2015. doi:10.1007/s10817-015-9345-1.Takashi Mitsuishi, Noboru Endou, and Yasunari Shidama. The concept of fuzzy set and membership function and basic properties of fuzzy set operation. Formalized Mathematics, 9(2):351–356, 2001.ZdzisƂaw Pawlak. Rough sets. International Journal of Parallel Programming, 11:341–356, 1982. doi:10.1007/BF01001956.Lotfi Zadeh. Fuzzy sets. Information and Control, 8(3):338–353, 1965.25324124

    Towards Better Query Classification with Multi-Expert Knowledge Condensation in JD Ads Search

    Full text link
    Search query classification, as an effective way to understand user intents, is of great importance in real-world online ads systems. To ensure a lower latency, a shallow model (e.g. FastText) is widely used for efficient online inference. However, the representation ability of the FastText model is insufficient, resulting in poor classification performance, especially on some low-frequency queries and tailed categories. Using a deeper and more complex model (e.g. BERT) is an effective solution, but it will cause a higher online inference latency and more expensive computing costs. Thus, how to juggle both inference efficiency and classification performance is obviously of great practical importance. To overcome this challenge, in this paper, we propose knowledge condensation (KC), a simple yet effective knowledge distillation framework to boost the classification performance of the online FastText model under strict low latency constraints. Specifically, we propose to train an offline BERT model to retrieve more potentially relevant data. Benefiting from its powerful semantic representation, more relevant labels not exposed in the historical data will be added into the training set for better FastText model training. Moreover, a novel distribution-diverse multi-expert learning strategy is proposed to further improve the mining ability of relevant data. By training multiple BERT models from different data distributions, it can respectively perform better at high, middle, and low-frequency search queries. The model ensemble from multi-distribution makes its retrieval ability more powerful. We have deployed two versions of this framework in JD search, and both offline experiments and online A/B testing from multiple datasets have validated the effectiveness of the proposed approach

    Basic Formal Properties of Triangular Norms and Conorms

    Get PDF
    SummaryIn the article we present in the Mizar system [1], [8] the catalogue of triangular norms and conorms, used especially in the theory of fuzzy sets [13]. The name triangular emphasizes the fact that in the framework of probabilistic metric spaces they generalize triangle inequality [2].After defining corresponding Mizar mode using four attributes, we introduced the following t-norms: minimum t-norm minnorm (Def. 6),product t-norm prodnorm (Def. 8),Ɓukasiewicz t-norm Lukasiewicz_norm (Def. 10),drastic t-norm drastic_norm (Def. 11),nilpotent minimum nilmin_norm (Def. 12),Hamacher product Hamacher_norm (Def. 13), and corresponding t-conorms: maximum t-conorm maxnorm (Def. 7),probabilistic sum probsum_conorm (Def. 9),bounded sum BoundedSum_conorm (Def. 19),drastic t-conorm drastic_conorm (Def. 14),nilpotent maximum nilmax_conorm (Def. 18),Hamacher t-conorm Hamacher_conorm (Def. 17). Their basic properties and duality are shown; we also proved the predicate of the ordering of norms [10], [9]. It was proven formally that drastic-norm is the pointwise smallest t-norm and minnorm is the pointwise largest t-norm (maxnorm is the pointwise smallest t-conorm and drastic-conorm is the pointwise largest t-conorm). This work is a continuation of the development of fuzzy sets in Mizar [6] started in [11] and [3]; it could be used to give a variety of more general operations on fuzzy sets. Our formalization is much closer to the set theory used within the Mizar Mathematical Library than the development of rough sets [4], the approach which was chosen allows however for merging both theories [5], [7].Institute of Informatics, University of BiaƂystok, PolandGrzegorz Bancerek, CzesƂaw ByliƄski, Adam Grabowski, Artur KorniƂowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-817.Didier Dubois and Henri Prade. Fuzzy Sets and Systems: Theory and Applications. Academic Press, New York, 1980.Adam Grabowski. The formal construction of fuzzy numbers. Formalized Mathematics, 22(4):321–327, 2014. doi: 10.2478/forma-2014-0032.Adam Grabowski. On the computer-assisted reasoning about rough sets. In B. Dunin-KÈ©plicz, A. Jankowski, A. Skowron, and M. Szczuka, editors, International Workshop on Monitoring, Security, and Rescue Techniques in Multiagent Systems Location, volume 28 of Advances in Soft Computing, pages 215–226, Berlin, Heidelberg, 2005. Springer-Verlag. doi: 10.1007/3-540-32370-815.Adam Grabowski. Efficient rough set theory merging. Fundamenta Informaticae, 135(4): 371–385, 2014. doi: 10.3233/FI-2014-1129.Adam Grabowski. On the computer certification of fuzzy numbers. In M. Ganzha, L. Maciaszek, and M. Paprzycki, editors, 2013 Federated Conference on Computer Science and Information Systems (FedCSIS), Federated Conference on Computer Science and Information Systems, pages 51–54, 2013.Adam Grabowski and Takashi Mitsuishi. Initial comparison of formal approaches to fuzzy and rough sets. In Leszek Rutkowski, Marcin Korytkowski, Rafal Scherer, Ryszard Tadeusiewicz, Lotfi A. Zadeh, and Jacek M. Zurada, editors, Artificial Intelligence and Soft Computing - 14th International Conference, ICAISC 2015, Zakopane, Poland, June 14-18, 2015, Proceedings, Part I, volume 9119 of Lecture Notes in Computer Science, pages 160–171. Springer, 2015. doi: 10.1007/978-3-319-19324-315.Adam Grabowski, Artur KorniƂowicz, and Adam Naumowicz. Four decades of Mizar. Journal of Automated Reasoning, 55(3):191–198, 2015. doi: 10.1007/s10817-015-9345-1.Petr HĂĄjek. Metamathematics of Fuzzy Logic. Dordrecht: Kluwer, 1998.Erich Peter Klement, Radko Mesiar, and Endre Pap. Triangular Norms. Dordrecht: Kluwer, 2000.Takashi Mitsuishi, Noboru Endou, and Yasunari Shidama. The concept of fuzzy set and membership function and basic properties of fuzzy set operation. Formalized Mathematics, 9(2):351–356, 2001.Takashi Mitsuishi, Katsumi Wasaki, and Yasunari Shidama. Basic properties of fuzzy set operation and membership function. Formalized Mathematics, 9(2):357–362, 2001.Lotfi Zadeh. Fuzzy sets. Information and Control, 8(3):338–353, 1965.2529310

    On Fuzzy Negations Generated by Fuzzy Implications

    Get PDF
    We continue in the Mizar system [2] the formalization of fuzzy implications according to the book of Baczynski and Jayaram “Fuzzy Implications” [1]. In this article we define fuzzy negations and show their connections with previously defined fuzzy implications [4] and [5] and triangular norms and conorms [6]. This can be seen as a step towards building a formal framework of fuzzy connectives [10]. We introduce formally Sugeno negation, boundary negations and show how these operators are pointwise ordered. This work is a continuation of the development of fuzzy sets [12], [3] in Mizar [7] started in [11] and partially described in [8]. This submission can be treated also as a part of a formal comparison of fuzzy and rough approaches to incomplete or uncertain information within the Mizar Mathematical Library [9].Institute of Informatics, University of BiaƂystok, PolandMichaƂ Baczynski and Balasubramaniam Jayaram. Fuzzy Implications. Springer Publishing Company, Incorporated, 2008. doi:10.1007/978-3-540-69082-5.Grzegorz Bancerek, CzesƂaw Bylinski, Adam Grabowski, Artur KorniƂowicz, Roman Matuszewski, Adam Naumowicz, Karol Pak, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8_17.Didier Dubois and Henri Prade. Fuzzy Sets and Systems: Theory and Applications. Academic Press, New York, 1980.Adam Grabowski. Formal introduction to fuzzy implications. Formalized Mathematics, 25(3):241–248, 2017. doi:10.1515/forma-2017-0023.Adam Grabowski. Fundamental properties of fuzzy implications. Formalized Mathematics, 26(4):271–276, 2018. doi:10.2478/forma-2018-0023.Adam Grabowski. Basic formal properties of triangular norms and conorms. Formalized Mathematics, 25(2):93–100, 2017. doi:10.1515/forma-2017-0009Adam Grabowski. On the computer certification of fuzzy numbers. In M. Ganzha, L. Maciaszek, and M. Paprzycki, editors, 2013 Federated Conference on Computer Science and Information Systems (FedCSIS), Federated Conference on Computer Science and Information Systems, pages 51–54, 2013.Adam Grabowski and Takashi Mitsuishi. Extending Formal Fuzzy Sets with Triangular Norms and Conorms, volume 642: Advances in Intelligent Systems and Computing, pages 176–187. Springer International Publishing, Cham, 2018. doi:10.1007/978-3-319-66824-6_16.Adam Grabowski and Takashi Mitsuishi. Initial comparison of formal approaches to fuzzy and rough sets. In Leszek Rutkowski, Marcin Korytkowski, Rafal Scherer, Ryszard Tadeusiewicz, Lotfi A. Zadeh, and Jacek M. Zurada, editors, Artificial Intelligence and Soft Computing – 14th International Conference, ICAISC 2015, Zakopane, Poland, June 14-18, 2015, Proceedings, Part I, volume 9119 of Lecture Notes in Computer Science, pages 160–171. Springer, 2015. doi:10.1007/978-3-319-19324-3_15.Petr Hájek. Metamathematics of Fuzzy Logic. Dordrecht: Kluwer, 1998.Takashi Mitsuishi, Noboru Endou, and Yasunari Shidama. The concept of fuzzy set and membership function and basic properties of fuzzy set operation. Formalized Mathematics, 9(2):351–356, 2001.Lotfi Zadeh. Fuzzy sets. Information and Control, 8(3):338–353, 1965. doi:10.1016/S0019-9958(65)90241-X.12112

    Fundamental Properties of Fuzzy Implications

    Get PDF
    In the article we continue in the Mizar system [8], [2] the formalization of fuzzy implications according to the monograph of BaczyƄski and Jayaram “Fuzzy Implications” [1]. We develop a framework of Mizar attributes allowing us for a smooth proving of basic properties of these fuzzy connectives [9]. We also give a set of theorems about the ordering of nine fundamental implications: Ɓukasiewicz (ILK), Gödel (IGD), Reichenbach (IRC), Kleene-Dienes (IKD), Goguen (IGG), Rescher (IRS), Yager (IYG), Weber (IWB), and Fodor (IFD).This work is a continuation of the development of fuzzy sets in Mizar [6]; it could be used to give a variety of more general operations on fuzzy sets [13]. The formalization follows [10], [5], and [4].Institute of Informatics, University of BiaƂystok, PolandMichaƂ BaczyƄski and Balasubramaniam Jayaram. Fuzzy Implications. Springer Publishing Company, Incorporated, 2008. doi:10.1007/978-3-540-69082-5.Grzegorz Bancerek, CzesƂaw ByliƄski, Adam Grabowski, Artur KorniƂowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9–32, 2018. doi:10.1007/s10817-017-9440-6.Didier Dubois and Henri Prade. Fuzzy Sets and Systems: Theory and Applications. Academic Press, New York, 1980.Adam Grabowski. Formal introduction to fuzzy implications. Formalized Mathematics, 25(3):241–248, 2017. doi:10.1515/forma-2017-0023.Adam Grabowski. Basic formal properties of triangular norms and conorms. Formalized Mathematics, 25(2):93–100, 2017. doi:10.1515/forma-2017-0009.Adam Grabowski. On the computer certification of fuzzy numbers. In M. Ganzha, L. Maciaszek, and M. Paprzycki, editors, 2013 Federated Conference on Computer Science and Information Systems (FedCSIS), Federated Conference on Computer Science and Information Systems, pages 51–54, 2013.Adam Grabowski and Takashi Mitsuishi. Initial comparison of formal approaches to fuzzy and rough sets. In Leszek Rutkowski, Marcin Korytkowski, Rafal Scherer, Ryszard Tadeusiewicz, Lotfi A. Zadeh, and Jacek M. Zurada, editors, Artificial Intelligence and Soft Computing - 14th International Conference, ICAISC 2015, Zakopane, Poland, June 14-18, 2015, Proceedings, Part I, volume 9119 of Lecture Notes in Computer Science, pages 160–171. Springer, 2015. doi:10.1007/978-3-319-19324-3_15.Adam Grabowski, Artur KorniƂowicz, and Adam Naumowicz. Four decades of Mizar. Journal of Automated Reasoning, 55(3):191–198, 2015. doi:10.1007/s10817-015-9345-1.Petr HĂĄjek. Metamathematics of Fuzzy Logic. Dordrecht: Kluwer, 1998.Takashi Mitsuishi, Noboru Endou, and Yasunari Shidama. The concept of fuzzy set and membership function and basic properties of fuzzy set operation. Formalized Mathematics, 9(2):351–356, 2001.Yasunari Shidama. The Taylor expansions. Formalized Mathematics, 12(2):195–200, 2004.Philippe Smets and Paul Magrez. Implication in fuzzy logic. International Journal of Approximate Reasoning, 1(4):327–347, 1987. doi:10.1016/0888-613X(87)90023-5.Lotfi Zadeh. Fuzzy sets. Information and Control, 8(3):338–353, 1965. doi:10.1016/S0019-9958(65)90241-X.26427127

    GG-Mapper: Learning a Cover in the Mapper Construction

    Full text link
    The Mapper algorithm is a visualization technique in topological data analysis (TDA) that outputs a graph reflecting the structure of a given dataset. The Mapper algorithm requires tuning several parameters in order to generate a "nice" Mapper graph. The paper focuses on selecting the cover parameter. We present an algorithm that optimizes the cover of a Mapper graph by splitting a cover repeatedly according to a statistical test for normality. Our algorithm is based on GG-means clustering which searches for the optimal number of clusters in kk-means by conducting iteratively the Anderson-Darling test. Our splitting procedure employs a Gaussian mixture model in order to choose carefully the cover based on the distribution of a given data. Experiments for synthetic and real-world datasets demonstrate that our algorithm generates covers so that the Mapper graphs retain the essence of the datasets

    Recent Advances in General Game Playing

    Get PDF
    The goal of General Game Playing (GGP) has been to develop computer programs that can perform well across various game types. It is natural for human game players to transfer knowledge from games they already know how to play to other similar games. GGP research attempts to design systems that work well across different game types, including unknown new games. In this review, we present a survey of recent advances (2011 to 2014) in GGP for both traditional games and video games. It is notable that research on GGP has been expanding into modern video games. Monte-Carlo Tree Search and its enhancements have been the most influential techniques in GGP for both research domains. Additionally, international competitions have become important events that promote and increase GGP research. Recently, a video GGP competition was launched. In this survey, we review recent progress in the most challenging research areas of Artificial Intelligence (AI) related to universal game playing
    corecore