10,976 research outputs found

    Numerical Integration and Dynamic Discretization in Heuristic Search Planning over Hybrid Domains

    Full text link
    In this paper we look into the problem of planning over hybrid domains, where change can be both discrete and instantaneous, or continuous over time. In addition, it is required that each state on the trajectory induced by the execution of plans complies with a given set of global constraints. We approach the computation of plans for such domains as the problem of searching over a deterministic state model. In this model, some of the successor states are obtained by solving numerically the so-called initial value problem over a set of ordinary differential equations (ODE) given by the current plan prefix. These equations hold over time intervals whose duration is determined dynamically, according to whether zero crossing events take place for a set of invariant conditions. The resulting planner, FS+, incorporates these features together with effective heuristic guidance. FS+ does not impose any of the syntactic restrictions on process effects often found on the existing literature on Hybrid Planning. A key concept of our approach is that a clear separation is struck between planning and simulation time steps. The former is the time allowed to observe the evolution of a given dynamical system before committing to a future course of action, whilst the later is part of the model of the environment. FS+ is shown to be a robust planner over a diverse set of hybrid domains, taken from the existing literature on hybrid planning and systems.Comment: 17 page

    Dynamical Networks of Social Influence: Modern Trends and Perspectives

    Get PDF
    Dynamics and control of processes over social networks, such as the evolution of opinions, social influence and interpersonal appraisals, diffusion of information and misinformation, emergence and dissociation of communities, are now attracting significant attention from the broad research community that works on systems, control, identification and learning. To provide an introduction to this rapidly developing area, a Tutorial Session was included into the program of IFAC World Congress 2020. This paper provides a brief summary of the three tutorial lectures, covering the most “mature” directions in analysis of social networks and dynamics over them: 1) formation of opinions under social influence; 2) identification and learning for analysis of a network’s structure; 3) dynamics of interpersonal appraisals

    Optimal Planning with State Constraints

    Get PDF
    In the classical planning model, state variables are assigned values in the initial state and remain unchanged unless explicitly affected by action effects. However, some properties of states are more naturally modelled not as direct effects of actions but instead as derived, in each state, from the primary variables via a set of rules. We refer to those rules as state constraints. The two types of state constraints that will be discussed here are numeric state constraints and logical rules that we will refer to as axioms. When using state constraints we make a distinction between primary variables, whose values are directly affected by action effects, and secondary variables, whose values are determined by state constraints. While primary variables have finite and discrete domains, as in classical planning, there is no such requirement for secondary variables. For example, using numeric state constraints allows us to have secondary variables whose values are real numbers. We show that state constraints are a construct that lets us combine classical planning methods with specialised solvers developed for other types of problems. For example, introducing numeric state constraints enables us to apply planning techniques in domains involving interconnected physical systems, such as power networks. To solve these types of problems optimally, we adapt commonly used methods from optimal classical planning, namely state-space search guided by admissible heuristics. In heuristics based on monotonic relaxation, the idea is that in a relaxed state each variable assumes a set of values instead of just a single value. With state constraints, the challenge becomes to evaluate the conditions, such as goals and action preconditions, that involve secondary variables. We employ consistency checking tools to evaluate whether these conditions are satisfied in the relaxed state. In our work with numerical constraints we use linear programming, while with axioms we use answer set programming and three value semantics. This allows us to build a relaxed planning graph and compute constraint-aware version of heuristics based on monotonic relaxation. We also adapt pattern database heuristics. We notice that an abstract state can be thought of as a state in the monotonic relaxation in which the variables in the pattern hold only one value, while the variables not in the pattern simultaneously hold all the values in their domains. This means that we can apply the same technique for evaluating conditions on secondary variables as we did for the monotonic relaxation and build pattern databases similarly as it is done in classical planning. To make better use of our heuristics, we modify the A* algorithm by combining two techniques that were previously used independently – partial expansion and preferred operators. Our modified algorithm, which we call PrefPEA, is most beneficial in cases where heuristic is expensive to compute, but accurate, and states have many successors

    Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age

    Get PDF
    Simultaneous Localization and Mapping (SLAM)consists in the concurrent construction of a model of the environment (the map), and the estimation of the state of the robot moving within it. The SLAM community has made astonishing progress over the last 30 years, enabling large-scale real-world applications, and witnessing a steady transition of this technology to industry. We survey the current state of SLAM. We start by presenting what is now the de-facto standard formulation for SLAM. We then review related work, covering a broad set of topics including robustness and scalability in long-term mapping, metric and semantic representations for mapping, theoretical performance guarantees, active SLAM and exploration, and other new frontiers. This paper simultaneously serves as a position paper and tutorial to those who are users of SLAM. By looking at the published research with a critical eye, we delineate open challenges and new research issues, that still deserve careful scientific investigation. The paper also contains the authors' take on two questions that often animate discussions during robotics conferences: Do robots need SLAM? and Is SLAM solved

    An overview of decision table literature 1982-1995.

    Get PDF
    This report gives an overview of the literature on decision tables over the past 15 years. As much as possible, for each reference, an author supplied abstract, a number of keywords and a classification are provided. In some cases own comments are added. The purpose of these comments is to show where, how and why decision tables are used. The literature is classified according to application area, theoretical versus practical character, year of publication, country or origin (not necessarily country of publication) and the language of the document. After a description of the scope of the interview, classification results and the classification by topic are presented. The main body of the paper is the ordered list of publications with abstract, classification and comments.

    CASP Solutions for Planning in Hybrid Domains

    Full text link
    CASP is an extension of ASP that allows for numerical constraints to be added in the rules. PDDL+ is an extension of the PDDL standard language of automated planning for modeling mixed discrete-continuous dynamics. In this paper, we present CASP solutions for dealing with PDDL+ problems, i.e., encoding from PDDL+ to CASP, and extensions to the algorithm of the EZCSP CASP solver in order to solve CASP programs arising from PDDL+ domains. An experimental analysis, performed on well-known linear and non-linear variants of PDDL+ domains, involving various configurations of the EZCSP solver, other CASP solvers, and PDDL+ planners, shows the viability of our solution.Comment: Under consideration in Theory and Practice of Logic Programming (TPLP

    Phase Space Navigator: Towards Automating Control Synthesis in Phase Spaces for Nonlinear Control Systems

    Get PDF
    We develop a novel autonomous control synthesis strategy called Phase Space Navigator for the automatic synthesis of nonlinear control systems. The Phase Space Navigator generates global control laws by synthesizing flow shapes of dynamical systems and planning and navigating system trajectories in the phase spaces. Parsing phase spaces into trajectory flow pipes provide a way to efficiently reason about the phase space structures and search for global control paths. The strategy is particularly suitable for synthesizing high-performance control systems that do not lend themselves to traditional design and analysis techniques

    On-line planning and scheduling: an application to controlling modular printers

    Get PDF
    We present a case study of artificial intelligence techniques applied to the control of production printing equipment. Like many other real-world applications, this complex domain requires high-speed autonomous decision-making and robust continual operation. To our knowledge, this work represents the first successful industrial application of embedded domain-independent temporal planning. Our system handles execution failures and multi-objective preferences. At its heart is an on-line algorithm that combines techniques from state-space planning and partial-order scheduling. We suggest that this general architecture may prove useful in other applications as more intelligent systems operate in continual, on-line settings. Our system has been used to drive several commercial prototypes and has enabled a new product architecture for our industrial partner. When compared with state-of-the-art off-line planners, our system is hundreds of times faster and often finds better plans. Our experience demonstrates that domain-independent AI planning based on heuristic search can flexibly handle time, resources, replanning, and multiple objectives in a high-speed practical application without requiring hand-coded control knowledge
    • …
    corecore