366,713 research outputs found

    Risks of artificial intelligence

    Get PDF
    Papers from the conference on AI Risk (published in JETAI), supplemented by additional work. --- If the intelligence of artificial systems were to surpass that of humans, humanity would face significant risks. The time has come to consider these issues, and this consideration must include progress in artificial intelligence (AI) as much as insights from AI theory. -- Featuring contributions from leading experts and thinkers in artificial intelligence, Risks of Artificial Intelligence is the first volume of collected chapters dedicated to examining the risks of AI. The book evaluates predictions of the future of AI, proposes ways to ensure that AI systems will be beneficial to humans, and then critically evaluates such proposals. 1 Vincent C. Müller, Editorial: Risks of Artificial Intelligence - 2 Steve Omohundro, Autonomous Technology and the Greater Human Good - 3 Stuart Armstrong, Kaj Sotala and Sean O’Heigeartaigh, The Errors, Insights and Lessons of Famous AI Predictions - and What they Mean for the Future - 4 Ted Goertzel, The Path to More General Artificial Intelligence - 5 Miles Brundage, Limitations and Risks of Machine Ethics - 6 Roman Yampolskiy, Utility Function Security in Artificially Intelligent Agents - 7 Ben Goertzel, GOLEM: Toward an AGI Meta-Architecture Enabling Both Goal Preservation and Radical Self-Improvement - 8 Alexey Potapov and Sergey Rodionov, Universal Empathy and Ethical Bias for Artificial General Intelligence - 9 András Kornai, Bounding the Impact of AGI - 10 Anders Sandberg, Ethics and Impact of Brain Emulations 11 Daniel Dewey, Long-Term Strategies for Ending Existential Risk from Fast Takeoff - 12 Mark Bishop, The Singularity, or How I Learned to Stop Worrying and Love AI

    Application of Artificial Intelligence Algorithms Within the Medical Context for Non-Specialized Users: the CARTIER-IA Platform

    Get PDF
    The use of advanced algorithms and models such as Machine Learning, Deep Learning and other related approaches of Artificial Intelligence have grown in their use given their benefits in different contexts. One of these contexts is the medical domain, as these algorithms can support disease detection, image segmentation and other multiple tasks. However, it is necessary to organize and arrange the different data resources involved in these scenarios and tackle the heterogeneity of data sources. This work presents the CARTIER-IA platform: a platform for the management of medical data and imaging. The goal of this project focuses on providing a friendly and usable interface to organize structured data, to visualize and edit medical images, and to apply Artificial Intelligence algorithms on the stored resources. One of the challenges of the platform design is to ease these complex tasks in a way that non-AI-specialized users could benefit from the application of AI algorithms without further training. Two use cases of AI application within the platform are provided, as well as a heuristic evaluation to assess the usability of the first version of CARTIER-IA. Year of Publication 2021 Journal International Journal of Interactive Multimedia and Artificial Intelligence Volume 6 Issue Regular Issue Number 6 Number of Pages 46-53 Date Published 06/2021 ISSN Number 1989-1660 URL https://www.ijimai.org/journal/sites/default/files/2021-05/ijimai_6_6_5.pdf DOI 10.9781/ijimai.2021.05.005 DOI Google Scholar BibTeX EndNote X3 XML EndNote 7 XML Endnote tagged Marc RIS Attachment ijimai_6_6_5.pdf 932.11 K

    Possible strategies for use of artificial intelligence in screen-reading of mammograms, based on retrospective data from 122,969 screening examinations

    Get PDF
    Objectives Artificial intelligence (AI) has shown promising results when used on retrospective data from mammographic screening. However, few studies have explored the possible consequences of different strategies for combining AI and radiologists in screen-reading. Methods A total of 122,969 digital screening examinations performed between 2009 and 2018 in BreastScreen Norway were retrospectively processed by an AI system, which scored the examinations from 1 to 10; 1 indicated low suspicion of malignancy and 10 high suspicion. Results were merged with information about screening outcome and used to explore consensus, recall, and cancer detection for 11 different scenarios of combining AI and radiologists. Results Recall was 3.2%, screen-detected cancer 0.61% and interval cancer 0.17% after independent double reading and served as reference values. In a scenario where examinations with AI scores 1–5 were considered negative and 6–10 resulted in standard independent double reading, the estimated recall was 2.6% and screen-detected cancer 0.60%. When scores 1–9 were considered negative and score 10 double read, recall was 1.2% and screen-detected cancer 0.53%. In these two scenarios, potential rates of screen-detected cancer could be up to 0.63% and 0.56%, if the interval cancers selected for consensus were detected at screening. In the former scenario, screen-reading volume would be reduced by 50%, while the latter would reduce the volume by 90%. Conclusion Several theoretical scenarios with AI and radiologists have the potential to reduce the volume in screen-reading without affecting cancer detection substantially. Possible influence on recall and interval cancers must be evaluated in prospective studies. Key Points Different scenarios using artificial intelligence in combination with radiologists could reduce the screen-reading volume by 50% and result in a rate of screen-detected cancer ranging from 0.59% to 0.60%, compared to 0.61% after standard independent double reading The use of artificial intelligence in combination with radiologists has the potential to identify negative screening examinations with high precision in mammographic screening and to reduce the rate of interval cancer</li

    Review of neural modelling on cardiovascular rehabilitation active processes by using cycloergometers

    Get PDF
    Abstract publicado en EUROSIM 2019 Abstract Volume. ARGESIM Report 58, ISBN: 978-3-901608-92-6 (ebook), DOI: 10.11128/arep.58This work gathers important developments carried out in a specific area of the Biomedical Engineering which applies advanced models based on Artificial Neural Networks to improve Cardiovascular Rehabilitation (CR) processes by using Cycloergometers. This work presents an updated revision of proposals, focusing on different problems involved in CR and considering features and requirements nowadays taken into account during their modelling processes. Furthermore, the signals analysed in these models are studied and presented below. Among them, a review of solutions applied to CR processes, focused on Computational Intelligence are cited.UPV/EHU, Grupo de Investigación de Inteligencia Computaciona

    Review of neural modelling on cardiovascular rehabilitation active processes by using cycloergometers

    Get PDF
    Abstract publicado en EUROSIM 2019 Abstract Volume. ARGESIM Report 58, ISBN: 978-3-901608-92-6 (ebook), DOI: 10.11128/arep.58This work gathers important developments carried out in a specific area of the Biomedical Engineering which applies advanced models based on Artificial Neural Networks to improve Cardiovascular Rehabilitation (CR) processes by using Cycloergometers. This work presents an updated revision of proposals, focusing on different problems involved in CR and considering features and requirements nowadays taken into account during their modelling processes. Furthermore, the signals analysed in these models are studied and presented below. Among them, a review of solutions applied to CR processes, focused on Computational Intelligence are cited.UPV/EHU, Grupo de Investigación de Inteligencia Computaciona

    Novel Artificial Human Optimization Field Algorithms - The Beginning

    Full text link
    New Artificial Human Optimization (AHO) Field Algorithms can be created from scratch or by adding the concept of Artificial Humans into other existing Optimization Algorithms. Particle Swarm Optimization (PSO) has been very popular for solving complex optimization problems due to its simplicity. In this work, new Artificial Human Optimization Field Algorithms are created by modifying existing PSO algorithms with AHO Field Concepts. These Hybrid PSO Algorithms comes under PSO Field as well as AHO Field. There are Hybrid PSO research articles based on Human Behavior, Human Cognition and Human Thinking etc. But there are no Hybrid PSO articles which based on concepts like Human Disease, Human Kindness and Human Relaxation. This paper proposes new AHO Field algorithms based on these research gaps. Some existing Hybrid PSO algorithms are given a new name in this work so that it will be easy for future AHO researchers to find these novel Artificial Human Optimization Field Algorithms. A total of 6 Artificial Human Optimization Field algorithms titled "Human Safety Particle Swarm Optimization (HuSaPSO)", "Human Kindness Particle Swarm Optimization (HKPSO)", "Human Relaxation Particle Swarm Optimization (HRPSO)", "Multiple Strategy Human Particle Swarm Optimization (MSHPSO)", "Human Thinking Particle Swarm Optimization (HTPSO)" and "Human Disease Particle Swarm Optimization (HDPSO)" are tested by applying these novel algorithms on Ackley, Beale, Bohachevsky, Booth and Three-Hump Camel Benchmark Functions. Results obtained are compared with PSO algorithm.Comment: 25 pages, 41 figure
    • …
    corecore