57 research outputs found

    Classification of Resting-State fMRI using Evolutionary Algorithms: Towards a Brain Imaging Biomarker for Parkinson’s Disease

    Get PDF
    It is commonly accepted that accurate early diagnosis and monitoring of neurodegenerative conditions is essential for effective disease management and delivery of medication and treatment. This research develops automatic methods for detecting brain imaging preclinical biomarkers for Parkinson’s disease (PD) by considering the novel application of evolutionary algorithms. An additional novel element of this work is the use of evolutionary algorithms to both map and predict the functional connectivity in patients using rs-fMRI data. Specifically, Cartesian Genetic Programming was used to classify dynamic causal modelling data as well as timeseries data. The findings were validated using two other commonly used classification methods (Artificial Neural Networks and Support Vector Machines) and by employing k-fold cross-validation. Across dynamic causal modelling and timeseries analyses, findings revealed maximum accuracies of 75.21% for early stage (prodromal) PD patients in which patients reveal no motor symptoms versus healthy controls, 85.87% for PD patients versus prodromal PD patients, and 92.09% for PD patients versus healthy controls. Prodromal PD patients were classified from healthy controls with high accuracy – this is notable and represents the key finding since current methods of diagnosing prodromal PD have low reliability and low accuracy. Furthermore, Cartesian Genetic Programming provided comparable performance accuracy relative to Artificial Neural Networks and Support Vector Machines. Nevertheless, evolutionary algorithms enable us to decode the classifier in terms of understanding the data inputs that are used, more easily than in Artificial Neural Networks and Support Vector Machines. Hence, these findings underscore the relevance of both dynamic causal modelling analyses for classification and Cartesian Genetic Programming as a novel classification tool for brain imaging data with medical implications for disease diagnosis, particularly in early stages 5-20 years prior to motor symptoms

    Deep Learning in Medical Image Analysis

    Get PDF
    The accelerating power of deep learning in diagnosing diseases will empower physicians and speed up decision making in clinical environments. Applications of modern medical instruments and digitalization of medical care have generated enormous amounts of medical images in recent years. In this big data arena, new deep learning methods and computational models for efficient data processing, analysis, and modeling of the generated data are crucially important for clinical applications and understanding the underlying biological process. This book presents and highlights novel algorithms, architectures, techniques, and applications of deep learning for medical image analysis

    Design, implementation and realization of an integrated platform dedicated to e-public health, for analysing health data and supporting the management control in healthcare companies.

    Get PDF
    In healthcare, the information is a fundamental aspect and the human body is the major source of every kind of data: the challenge is to benefit from this huge amount of unstructured data by applying technologic solutions, called Big Data Analysis, that allows the management of data and the extraction of information through informatic systems. This thesis aims to introduce a technologic solution made up of two open source platforms: Power BI and Knime Analytics Platform. First, the importance, the role and the processes of business intelligence and machine learning in healthcare will be discussed; secondly, the platforms will be described, particularly enhancing their feasibility and capacities. Then, the clinical specialties, where they have been applied, will be shown by highlighting the international literature that have been produced: neurology, cardiology, oncology, fetal-monitoring and others. An application in the current pandemic situation due to SARS-CoV-2 will be described by using more than 50000 records: a cascade of 3 platforms helping health facilities to deal with the current worldwide pandemic. Finally, the advantages, the disadvantages, the limitations and the future developments in this framework will be discussed while the architectural technologic solution containing a data warehouse, a platform to collect data, two platforms to analyse health and management data and the possible applications will be shown

    Multiclass Bone Segmentation of PET/CT Scans for Automatic SUV Extraction

    Get PDF
    In this thesis I present an automated framework for segmentation of bone structures from dual modality PET/CT scans and further extraction of SUV measurements. The first stage of this framework consists of a variant of the 3D U-Net architecture for segmentation of three bone structures: vertebral body, pelvis, and sternum. The dataset for this model consists of annotated slices from the CT scans retrieved from the study of post-HCST patients and the 18F-FLT radiotracer, which are undersampled volumes due to the low-dose radiation used during the scanning. The mean Dice scores obtained by the proposed model are 0.9162, 0.9163, and 0.8721 for the vertebral body, pelvis, and sternum class respectively. The next step of the proposed framework consists of identifying the individual vertebrae, which is a particularly difficult task due to the low resolution of the CT scans in the axial dimension. To address this issue, I present an iterative algorithm for instance segmentation of vertebral bodies, based on anatomical priors of the spine for detecting the starting point of a vertebra. The spatial information contained in the CT and PET scans is used to translate the resulting masks to the PET image space and extract SUV measurements. I then present a CNN model based on the DenseNet architecture that, for the first time, classifies the spatial distribution of SUV within the marrow cavities of the vertebral bodies as normal engraftment or possible relapse. With an AUC of 0.931 and an accuracy of 92% obtained on real patient data, this method shows good potential as a future automated tool to assist in monitoring the recovery process of HSCT patients

    Advanced Computational Methods for Oncological Image Analysis

    Get PDF
    [Cancer is the second most common cause of death worldwide and encompasses highly variable clinical and biological scenarios. Some of the current clinical challenges are (i) early diagnosis of the disease and (ii) precision medicine, which allows for treatments targeted to specific clinical cases. The ultimate goal is to optimize the clinical workflow by combining accurate diagnosis with the most suitable therapies. Toward this, large-scale machine learning research can define associations among clinical, imaging, and multi-omics studies, making it possible to provide reliable diagnostic and prognostic biomarkers for precision oncology. Such reliable computer-assisted methods (i.e., artificial intelligence) together with clinicians’ unique knowledge can be used to properly handle typical issues in evaluation/quantification procedures (i.e., operator dependence and time-consuming tasks). These technical advances can significantly improve result repeatability in disease diagnosis and guide toward appropriate cancer care. Indeed, the need to apply machine learning and computational intelligence techniques has steadily increased to effectively perform image processing operations—such as segmentation, co-registration, classification, and dimensionality reduction—and multi-omics data integration.

    Signal processing and machine learning techniques for Doppler ultrasound haemodynamic measurements

    Get PDF
    Haemodynamic monitoring is an invaluable tool for evaluating, diagnosing and treating the cardiovascular system, and is an integral component of intensive care units, obstetrics wards and other medical units. Doppler ultrasound provides a non-invasive, cost-effective and fast means of haemodynamic monitoring, which traditionally necessitates highly invasive methods such as Pulmonary artery catheter or transoesophageal echocardiography. However, Doppler ultrasound scan acquisition requires a highly experienced operator and can be very challenging. Machine learning solutions that quantify and guide the scanning process in an automatic and intelligent manner could overcome these limitations and lead to routine monitoring. Development of such methods is the primary goal of the presented work. In response to this goal, this thesis proposes a suite of signal processing and machine learning techniques. Among these is a new and real-time method of maximum frequency envelope estimation. This method, which is based on image-processing techniques and is highly adaptive to varying signal quality, was developed to facilitate automatic and consistent extraction of features from Doppler ultrasound measurements. Through a thorough evaluation, this method was demonstrated to be accurate and more stable than alternative state-of-art methods. Two novel real-time methods of beat segmentation, which operate using the maximum frequency envelope, were developed to enable systematic feature extraction from individual cardiac cycles. These methods do not require any additional hardware, such as an electrocardiogram machine, and are fully automatic, real-time and highly resilient to noise. These qualities are not available in existing methods. Extensive evaluation demonstrated the methods to be highly successful. A host of machine learning solutions were analysed, designed and evaluated. This led to a set of novel features being proposed for Doppler ultrasound analysis. In addition, a state of- the-art image recognition classification method, hitherto undocumented for Doppler ultrasound analysis, was shown to be superior to more traditional modelling approaches. These contributions facilitated the design of two innovative types of feedback. To reflect beneficial probe movements, which are otherwise difficult to distinguish, a regression model to quantitatively score ultrasound measurements was proposed. This feedback was shown to be highly correlated with an ideal response. The second type of feedback explicitly predicted beneficial probe movements. This was achieved using classification models with up to five categories, giving a more challenging scenario than those addressed in prior disease classification work. Evaluation of these, for the first time, demonstrated that Doppler scan information can be used to automatically indicate probe position. Overall, the presented work includes significant contributions for Doppler ultrasound analysis, it proposes valuable new machine learning techniques, and with continued work, could lead to solutions that unlock the full potential of Doppler ultrasound haemodynamic monitoring

    Quantitative imaging analysis:challenges and potentials

    Get PDF

    Objective evaluation of Parkinson's disease bradykinesia

    Get PDF
    Bradykinesia is the fundamental motor feature of Parkinson’s disease - obligatory for diagnosis and central to monitoring. It is a complex clinicalsign that describes movements with slow speed, small amplitude, irregular rhythm, brief pauses and progressive decrements. Clinical ascertainment of the presence and severity of bradykinesia relies on subjective interpretation of these components, with considerable variability amongst clinicians, and this may contribute to diagnostic error and inaccurate monitoring in Parkinson’s disease. The primary aim of this thesis was to assess whether a novel non-invasive device could objectively measure bradykinesia and predict diagnostic classification of movement data from Parkinson’s disease patients and healthy controls. The second aim was to evaluate how objective measures of bradykinesia correlate with clinical measures of bradykinesia severity. The third aim was to investigate the characteristic kinematic features of bradykinesia. Forty-nine patients with Parkinson’s disease and 41 healthy controls were recruited in Leeds. They performed a repetitive finger-tapping task for 30 seconds whilst wearing small electromagnetic tracking sensors on their finger and thumb. Movement data was analysed using two different methods - statistical measures of the separable components of bradykinesia and a computer science technique called evolutionary algorithms. Validation data collected independently from 13 patients and nine healthy controls in San Francisco was used to assess whether the results generalised. The evolutionary algorithm technique was slightly superior at classifying the movement data into the correct diagnostic groups, especially for the mildest clinical grades of bradykinesia, and they generalised to the independent group data. The objective measures of finger tapping correlated well with clinical grades of bradykinesia severity. Detailed analysis of the data suggests that a defining feature of Parkinson’s disease bradykinesia called the sequence effect may be a physiological rather than a pathological phenomenon. The results inform the development of a device that may support clinical diagnosis and monitoring of Parkinson’s disease and also be used to investigate bradykinesia

    A survey of the application of soft computing to investment and financial trading

    Get PDF
    • …
    corecore