358 research outputs found

    Deep Learning: Our Miraculous Year 1990-1991

    Full text link
    In 2020, we will celebrate that many of the basic ideas behind the deep learning revolution were published three decades ago within fewer than 12 months in our "Annus Mirabilis" or "Miraculous Year" 1990-1991 at TU Munich. Back then, few people were interested, but a quarter century later, neural networks based on these ideas were on over 3 billion devices such as smartphones, and used many billions of times per day, consuming a significant fraction of the world's compute.Comment: 37 pages, 188 references, based on work of 4 Oct 201

    The Illusion of Internal Joy

    No full text
    International audienceJ. Schmidhuber proposes a "theory of fun & intrinsic motivation & creativity" that he has developed over the last two decades. This theory is precise enough to allow the programming of artificial agents exhibiting the requested behaviors. Schmidhuber's theory relies on an explicit 'internal joy drive' implemented by an 'information compression indicator'. In this paper, we show that this indicator is not necessary as soon as the 'brain' implementation involves associative memories, i.e., hierarchical cortical maps. The 'compression factor' is replaced by the 'smallest common activation pattern' in our framework, with the advantage of an immediate and plausible neural implementation. Our conclusion states that the 'internal joy' is an illusion. This remind us of the eliminative materialism position which claims that 'free-will' is also an illusion

    Artificial Superintelligence: Coordination & Strategy

    Get PDF
    Attention in the AI safety community has increasingly started to include strategic considerations of coordination between relevant actors in the field of AI and AI safety, in addition to the steadily growing work on the technical considerations of building safe AI systems. This shift has several reasons: Multiplier effects, pragmatism, and urgency. Given the benefits of coordination between those working towards safe superintelligence, this book surveys promising research in this emerging field regarding AI safety. On a meta-level, the hope is that this book can serve as a map to inform those working in the field of AI coordination about other promising efforts. While this book focuses on AI safety coordination, coordination is important to most other known existential risks (e.g., biotechnology risks), and future, human-made existential risks. Thus, while most coordination strategies in this book are specific to superintelligence, we hope that some insights yield “collateral benefits” for the reduction of other existential risks, by creating an overall civilizational framework that increases robustness, resiliency, and antifragility

    Generative Intrinsic Optimization: Intrinsic Control with Model Learning

    Full text link
    Future sequence represents the outcome after executing the action into the environment (i.e. the trajectory onwards). When driven by the information-theoretic concept of mutual information, it seeks maximally informative consequences. Explicit outcomes may vary across state, return, or trajectory serving different purposes such as credit assignment or imitation learning. However, the inherent nature of incorporating intrinsic motivation with reward maximization is often neglected. In this work, we propose a policy iteration scheme that seamlessly incorporates the mutual information, ensuring convergence to the optimal policy. Concurrently, a variational approach is introduced, which jointly learns the necessary quantity for estimating the mutual information and the dynamics model, providing a general framework for incorporating different forms of outcomes of interest. While we mainly focus on theoretical analysis, our approach opens the possibilities of leveraging intrinsic control with model learning to enhance sample efficiency and incorporate uncertainty of the environment into decision-making

    Recent Advances in General Game Playing

    Get PDF
    The goal of General Game Playing (GGP) has been to develop computer programs that can perform well across various game types. It is natural for human game players to transfer knowledge from games they already know how to play to other similar games. GGP research attempts to design systems that work well across different game types, including unknown new games. In this review, we present a survey of recent advances (2011 to 2014) in GGP for both traditional games and video games. It is notable that research on GGP has been expanding into modern video games. Monte-Carlo Tree Search and its enhancements have been the most influential techniques in GGP for both research domains. Additionally, international competitions have become important events that promote and increase GGP research. Recently, a video GGP competition was launched. In this survey, we review recent progress in the most challenging research areas of Artificial Intelligence (AI) related to universal game playing
    corecore