7,268 research outputs found

    A novel hybrid edge detection technique: ABC-FA

    Get PDF
    Image processing is a vast research field with diversified set of practices utilized in so many application areas such as military, security, medical imaging, machine learning and computer vision based on extracted useful information from any kind of image data. Edges within images are undoubtedly accepted as one of the most significant features providing substantial practical information for various applications working on top of miscellaneous optimization algorithms to achieve better results. Artificial Bee Colony and Firefly algorithms are recently developed optimization algorithms and are used to obtain better results for various problems. In this study, a novel hybrid optimization technique is proposed by combining those algorithms aiming better quality in edge detection on grayscale images. The performance of the proposed algorithm is compared with individual performances of Artificial Bee Colony algorithm and the fundamental edge detection methods. The results are demonstrated that the proposed method is encouraging and also produces meaningful results for similar applications.Publisher's Versio

    A Hybrid Fish – Bee Optimization Algorithm for Heart Disease Prediction using Multiple Kernel SVM Classifier

    Get PDF
    International audienceThe patient's heart disease status is obtained by using a heart disease detection model. That is used for the medical experts. In order to predict the heart disease, the existing technique use optimal classifier. Even though the existing technique achieved the better result, it has some disadvantages. In order to improve those drawbacks, the suggested technique utilizes the effective method for heart disease prediction. At first the input information is preprocessed and then the preprocessed result is forwarded to the feature selection process. For the feature selection process a proficient feature selection is used over the high dimensional medical data. Hybrid Fish Bee optimization algorithm (HFSBEE) is utilized. Thus, the proposed algorithm parallelizes the two algorithms such that the local behavior of artificial bee colony algorithm and global search of fish swarm optimization are effectively used to find the optimal solution. Classification process is performed by the transformation of medical dataset to the Multi kernel support vector machine (MKSVM). The process of our proposed technique is calculated based on the accuracy, sensitivity, specificity, precision, recall and F-measure. Here, for test analysis, the some datasets used i.e. Cleveland, Hungarian and Switzerland etc., that are given based on the UCI machine learning repository. The experimental outcome show that our presented technique is went better than the accuracy of 97.68%. This is for the Cleveland dataset when related with existing hybrid kernel support vector machine (HKSVM) method achieved 96.03% and optimal rough fuzzy classifier obtained 62.25%. The implementation of the proposed method is done by MATLAB platform. Rundown phrases-Artificial bee colony algorithm, Fish swarm optimization, Multi kernel support vector machine, Optimal rough fuzzy, Cleveland, Hungarian and Switzerland

    Training a Feed-forward Neural Network with Artificial Bee Colony Based Backpropagation Method

    Full text link
    Back-propagation algorithm is one of the most widely used and popular techniques to optimize the feed forward neural network training. Nature inspired meta-heuristic algorithms also provide derivative-free solution to optimize complex problem. Artificial bee colony algorithm is a nature inspired meta-heuristic algorithm, mimicking the foraging or food source searching behaviour of bees in a bee colony and this algorithm is implemented in several applications for an improved optimized outcome. The proposed method in this paper includes an improved artificial bee colony algorithm based back-propagation neural network training method for fast and improved convergence rate of the hybrid neural network learning method. The result is analysed with the genetic algorithm based back-propagation method, and it is another hybridized procedure of its kind. Analysis is performed over standard data sets, reflecting the light of efficiency of proposed method in terms of convergence speed and rate.Comment: 14 Pages, 11 figure

    Chemical and biological reactions of solidification of peat using ordinary portland cement (OPC) and coal ashes

    Get PDF
    Construction over peat area have often posed a challenge to geotechnical engineers. After decades of study on peat stabilisation techniques, there are still no absolute formulation or guideline that have been established to handle this issue. Some researchers have proposed solidification of peat but a few researchers have also discovered that solidified peat seemed to decrease its strength after a certain period of time. Therefore, understanding the chemical and biological reaction behind the peat solidification is vital to understand the limitation of this treatment technique. In this study, all three types of peat; fabric, hemic and sapric were mixed using Mixing 1 and Mixing 2 formulation which consisted of ordinary Portland cement, fly ash and bottom ash at various ratio. The mixtures of peat-binder-filler were subjected to the unconfined compressive strength (UCS) test, bacterial count test and chemical elemental analysis by using XRF, XRD, FTIR and EDS. Two pattern of strength over curing period were observed. Mixing 1 samples showed a steadily increase in strength over curing period until Day 56 while Mixing 2 showed a decrease in strength pattern at Day 28 and Day 56. Samples which increase in strength steadily have less bacterial count and enzymatic activity with increase quantity of crystallites. Samples with lower strength recorded increase in bacterial count and enzymatic activity with less crystallites. Analysis using XRD showed that pargasite (NaCa2[Mg4Al](Si6Al2)O22(OH)2) was formed in the higher strength samples while in the lower strength samples, pargasite was predicted to be converted into monosodium phosphate and Mg(OH)2 as bacterial consortium was re-activated. The Michaelis�Menten coefficient, Km of the bio-chemical reaction in solidified peat was calculated as 303.60. This showed that reaction which happened during solidification work was inefficient. The kinetics for crystallite formation with enzymatic effect is modelled as 135.42 (1/[S] + 0.44605) which means, when pargasite formed is lower, the amount of enzyme secretes is higher

    A hybrid swarm-based algorithm for single-objective optimization problems involving high-cost analyses

    Full text link
    In many technical fields, single-objective optimization procedures in continuous domains involve expensive numerical simulations. In this context, an improvement of the Artificial Bee Colony (ABC) algorithm, called the Artificial super-Bee enhanced Colony (AsBeC), is presented. AsBeC is designed to provide fast convergence speed, high solution accuracy and robust performance over a wide range of problems. It implements enhancements of the ABC structure and hybridizations with interpolation strategies. The latter are inspired by the quadratic trust region approach for local investigation and by an efficient global optimizer for separable problems. Each modification and their combined effects are studied with appropriate metrics on a numerical benchmark, which is also used for comparing AsBeC with some effective ABC variants and other derivative-free algorithms. In addition, the presented algorithm is validated on two recent benchmarks adopted for competitions in international conferences. Results show remarkable competitiveness and robustness for AsBeC.Comment: 19 pages, 4 figures, Springer Swarm Intelligenc
    corecore