826 research outputs found

    A hybrid swarm-based algorithm for single-objective optimization problems involving high-cost analyses

    Full text link
    In many technical fields, single-objective optimization procedures in continuous domains involve expensive numerical simulations. In this context, an improvement of the Artificial Bee Colony (ABC) algorithm, called the Artificial super-Bee enhanced Colony (AsBeC), is presented. AsBeC is designed to provide fast convergence speed, high solution accuracy and robust performance over a wide range of problems. It implements enhancements of the ABC structure and hybridizations with interpolation strategies. The latter are inspired by the quadratic trust region approach for local investigation and by an efficient global optimizer for separable problems. Each modification and their combined effects are studied with appropriate metrics on a numerical benchmark, which is also used for comparing AsBeC with some effective ABC variants and other derivative-free algorithms. In addition, the presented algorithm is validated on two recent benchmarks adopted for competitions in international conferences. Results show remarkable competitiveness and robustness for AsBeC.Comment: 19 pages, 4 figures, Springer Swarm Intelligenc

    Optimal fuzzy iterative learning control based on artificial bee colony for vibration control of piezoelectric smart structures

    Get PDF
    Combining P-type iterative learning (IL) control, fuzzy logic control and artificial bee colony (ABC) algorithm, a new optimal fuzzy IL controller is designed for active vibration control of piezoelectric smart structures. In order to accelerate the learning speed of feedback gain, the fuzzy logic controller is integrated into the ANSYS finite element (FE) models by using APDL (ANSYS Parameter Design Language) approach to adjust adaptively the learning gain of P-type IL control. For improving the performance and robustness of the fuzzy logic controller as well as diminishing human intervention in the operation process, ABC algorithm is used to automatically identify the optimal configurations for values in fuzzy query table, fuzzification parameters and defuzzification parameters, and the main program of ABC algorithm is operated in MATLAB. The active vibration equations are driven from the FE equations for the dynamic response of a linear elastic piezoelectric smart structure. Considering the vibrations generated by various external disturbances, the optimal fuzzy IL controller is numerically investigated for a clamped piezoelectric smart plate. Results demonstrate that the proposed control approach makes the feedback gain has a fast learning speed and performs excellent in vibration suppression. This is demonstrated in the results by comparing the new control approach with the P-type IL control

    Investigation of the effect of feeding period in honey bee algorithm

    Get PDF
    In the study, it was investigated the ejaculation ability and semen quality of drones, according to feeding with pollen in different periods. In the first step of the study, 16 %, 32 %, 47 %, 63 %, 79 %, and 100 % feeding periods were applied to the drones, for investigating the effect on ejaculation ability, and the semen quality of drones was investigated. While investigating these feeding period effects “0-1”, bonded, and unbounded knapsack optimization problems were used. After the most effective feeding period was determined, this period was applied to the traveling salesman and liquid storage tank problems in the second step of the study. In the analysis of the traveling salesman problem, it was determined the shortest way between two cities. Analysis of the liquid storage tank problem, it was determined the minimum connector areas. As a result, the analysis results showed that the performance of the artificial bee colony algorithm is very good while solving too complex engineering optimization problems

    Performance Analysis of Artificial Bee-Colony Algorithm for Routing and Wavelength Assignment in DWDM Transport Network

    Get PDF
    Setting up lightpaths for a set of requested connection of wavelength division multiplexing (WDM) network, is by routing and assigning wavelengths to each connection. So as to minimize the use of network resources or maximize the traffic served, is called the routing and wavelength assignment (RWA) problem. A new idea based on Artificial Bee Colony (ABC) algorithm is introduced for solving RWA problem which is known to be an NP-hard problem. In the proposed ABC-RWA approach every food source represents a possible and feasible candidate lightpath between each original and destination node span in demand matrix. The situation of the food source is modified by some artificial bee in the population where the aim is to discover the places of food sources. The food source with the highest nectar value seems to be a solution which is evaluated by the fitness function. This thesis proposes solutions to solve the RWA problem using artificial bee-colony algorithm in order to achieve better performance of the network connection to serve a given demand matrix of an optical network to reach RWA global solution. The work will evaluate the path length (propagation delay) for solving RWA problem with ABC algorithm in a real-world optical networks test bench to find optimal routes for connection request in demand matrix according to objective function and some physical and operational constraints in Dense Wavelength Division Multiplexing (DWDM) optical networks. Based on simulation with several generated traffic distribution, ABC algorithm can be used to solve routing and wavelength problem at DWDM transport network as shown that in line with iteration process the path length observed toward minimum value. The number of iteration needed to reach the fitness value depends on several parameter such as number of connection request, number of wavelength and alternative path, the distribution of generated traffic and also population size

    Digital Filter Design Using Improved Artificial Bee Colony Algorithms

    Get PDF
    Digital filters are often used in digital signal processing applications. The design objective of a digital filter is to find the optimal set of filter coefficients, which satisfies the desired specifications of magnitude and group delay responses. Evolutionary algorithms are population-based meta-heuristic algorithms inspired by the biological behaviors of species. Compared to gradient-based optimization algorithms such as steepest descent and Newton’s like methods, these bio-inspired algorithms have the advantages of not getting stuck at local optima and being independent of the starting point in the solution space. The limitations of evolutionary algorithms include the presence of control parameters, problem specific tuning procedure, premature convergence and slower convergence rate. The artificial bee colony (ABC) algorithm is a swarm-based search meta-heuristic algorithm inspired by the foraging behaviors of honey bee colonies, with the benefit of a relatively fewer control parameters. In its original form, the ABC algorithm has certain limitations such as low convergence rate, and insufficient balance between exploration and exploitation in the search equations. In this dissertation, an ABC-AMR algorithm is proposed by incorporating an adaptive modification rate (AMR) into the original ABC algorithm to increase convergence rate by adjusting the balance between exploration and exploitation in the search equations through an adaptive determination of the number of parameters to be updated in every iteration. A constrained ABC-AMR algorithm is also developed for solving constrained optimization problems.There are many real-world problems requiring simultaneous optimizations of more than one conflicting objectives. Multiobjective (MO) optimization produces a set of feasible solutions called the Pareto front instead of a single optimum solution. For multiobjective optimization, if a decision maker’s preferences can be incorporated during the optimization process, the search process can be confined to the region of interest instead of searching the entire region. In this dissertation, two algorithms are developed for such incorporation. The first one is a reference-point-based MOABC algorithm in which a decision maker’s preferences are included in the optimization process as the reference point. The second one is a physical-programming-based MOABC algorithm in which physical programming is used for setting the region of interest of a decision maker. In this dissertation, the four developed algorithms are applied to solve digital filter design problems. The ABC-AMR algorithm is used to design Types 3 and 4 linear phase FIR differentiators, and the results are compared to those obtained by the original ABC algorithm, three improved ABC algorithms, and the Parks-McClellan algorithm. The constrained ABC-AMR algorithm is applied to the design of sparse Type 1 linear phase FIR filters of filter orders 60, 70 and 80, and the results are compared to three state-of-the-art design methods. The reference-point-based multiobjective ABC algorithm is used to design of asymmetric lowpass, highpass, bandpass and bandstop FIR filters, and the results are compared to those obtained by the preference-based multiobjective differential evolution algorithm. The physical-programming-based multiobjective ABC algorithm is used to design IIR lowpass, highpass and bandpass filters, and the results are compared to three state-of-the-art design methods. Based on the obtained design results, the four design algorithms are shown to be competitive as compared to the state-of-the-art design methods

    A bi-objective turning restriction design problem in urban road networks

    Get PDF
    postprin
    • …
    corecore