411 research outputs found

    Evaluation of Motion Artifact Metrics for Coronary CT Angiography

    Get PDF
    Purpose This study quantified the performance of coronary artery motion artifact metrics relative to human observer ratings. Motion artifact metrics have been used as part of motion correction and best‐phase selection algorithms for Coronary Computed Tomography Angiography (CCTA). However, the lack of ground truth makes it difficult to validate how well the metrics quantify the level of motion artifact. This study investigated five motion artifact metrics, including two novel metrics, using a dynamic phantom, clinical CCTA images, and an observer study that provided ground‐truth motion artifact scores from a series of pairwise comparisons. Method Five motion artifact metrics were calculated for the coronary artery regions on both phantom and clinical CCTA images: positivity, entropy, normalized circularity, Fold Overlap Ratio (FOR), and Low‐Intensity Region Score (LIRS). CT images were acquired of a dynamic cardiac phantom that simulated cardiac motion and contained six iodine‐filled vessels of varying diameter and with regions of soft plaque and calcifications. Scans were repeated with different gantry start angles. Images were reconstructed at five phases of the motion cycle. Clinical images were acquired from 14 CCTA exams with patient heart rates ranging from 52 to 82 bpm. The vessel and shading artifacts were manually segmented by three readers and combined to create ground‐truth artifact regions. Motion artifact levels were also assessed by readers using a pairwise comparison method to establish a ground‐truth reader score. The Kendall\u27s Tau coefficients were calculated to evaluate the statistical agreement in ranking between the motion artifacts metrics and reader scores. Linear regression between the reader scores and the metrics was also performed. Results On phantom images, the Kendall\u27s Tau coefficients of the five motion artifact metrics were 0.50 (normalized circularity), 0.35 (entropy), 0.82 (positivity), 0.77 (FOR), 0.77(LIRS), where higher Kendall\u27s Tau signifies higher agreement. The FOR, LIRS, and transformed positivity (the fourth root of the positivity) were further evaluated in the study of clinical images. The Kendall\u27s Tau coefficients of the selected metrics were 0.59 (FOR), 0.53 (LIRS), and 0.21 (Transformed positivity). In the study of clinical data, a Motion Artifact Score, defined as the product of FOR and LIRS metrics, further improved agreement with reader scores, with a Kendall\u27s Tau coefficient of 0.65. Conclusion The metrics of FOR, LIRS, and the product of the two metrics provided the highest agreement in motion artifact ranking when compared to the readers, and the highest linear correlation to the reader scores. The validated motion artifact metrics may be useful for developing and evaluating methods to reduce motion in Coronary Computed Tomography Angiography (CCTA) images

    Toward time resolved 4D cardiac CT imaging with patient dose reduction: estimating the global heart motion

    Get PDF
    published_or_final_versio

    State of the art: iterative CT reconstruction techniques

    Get PDF
    Owing to recent advances in computing power, iterative reconstruction (IR) algorithms have become a clinically viable option in computed tomographic (CT) imaging. Substantial evidence is accumulating about the advantages of IR algorithms over established analytical methods, such as filtered back projection. IR improves image quality through cyclic image processing. Although all available solutions share the common mechanism of artifact reduction and/or potential for radiation dose savings, chiefly due to image noise suppression, the magnitude of these effects depends on the specific IR algorithm. In the first section of this contribution, the technical bases of IR are briefly reviewed and the currently available algorithms released by the major CT manufacturers are described. In the second part, the current status of their clinical implementation is surveyed. Regardless of the applied IR algorithm, the available evidence attests to the substantial potential of IR algorithms for overcoming traditional limitations in CT imaging

    Automated Selection of the Optimal Cardiac Phase for Single-Beat Coronary CT Angiography Reconstruction

    Get PDF
    This thesis investigates an automated algorithm for selecting the optimal cardiac phase for CCTA reconstruction. Reconstructing a low-motion cardiac phase improves coronary artery visualization in coronary CT angiography (CCTA) exams. Currently, standard end-systole and/or mid-diastole default phases are prescribed or alternatively, quiescent phases are determined by the user. As manual selection may be time-consuming and standard locations may be suboptimal due to patient variability, an automated method is investigated. An automated algorithm was developed to select the optimal phase based on quantitative image quality (IQ) metrics. For each reconstructed slice at each reconstructed phase, an image quality metric was calculated based on measures of circularity and edge strength of through-plane vessels. The image quality metric was aggregated across slices, while a metric of vessel-location consistency was used to ignore slices that did not contain through-plane vessels. A binary metric based on the edge strength of in-plane vessels was calculated to determine if IQ of in-plane vessels was acceptable. The algorithm performance was evaluated using two observer studies. Fourteen single-beat CCTA exams (Revolution CT, GE Healthcare) reconstructed at 2% intervals were evaluated for best systolic (1), diastolic (6), or systolic and diastolic phases (7) by three readers and the algorithm. Inter-reader (RR) and reader-algorithm (RA) agreement was calculated using the mean absolute difference (MAD) and concordance correlation coefficient (CCC). A reader-consensus best phase was determined and compared to the algorithm selected phase. In cases where the algorithm and consensus best phases differed by more than 2%, IQ was scored by three readers using a 5pt Likert scale. There was no significant difference between RR and RA agreement for either MAD or CCC metrics (p\u3e0.2). The algorithm phase was within 2% of the consensus phase in 71% of cases. There was no significant difference (p\u3e0.2) between the IQ of the algorithm phase (4.06±0.73) and the consensus phase (4.11±0.76). The proposed algorithm was statistically equivalent to a reader in selecting an optimal cardiac phase for CCTA exams. When reader and algorithm phases differed by \u3e2%, IQ was statistically equivalent

    Motion compensated iterative reconstruction for cardiac X-ray tomography

    Get PDF
    Within this Ph.D. project, three-dimensional reconstruction methods for moving objects (with a focus on the human heart) from cone-beam X-ray projections using iterative reconstruction algorithms were developed and evaluated. This project was carried in collaboration with the Digital Imaging Group of Philips Research Europe – Hamburg. In cardiac cone-beam computed tomography (CT) a large effort is continuously dedicated to increase scanning speed in order to minimize patient or organ motion during acquisition. In particular, motion causes severe artifacts such as blurring and streaks in tomographic images. While for a large class of applications the current scanning speed is sufficient, in cardiac CT image reconstruction improvements are still required. Whereas it is currently feasible to achieve stable image quality in the resting phases of the cardiac cycle, in the phase of fast motion data acquisition is too slow. A variety of algorithms to reduce or compensate for motion artifacts have been proposed in literature. Most of the correction methods address the calculation of consistent projection data belonging to the same motion state (gated CT reconstruction). Even if gated CT leads to better results, not only with respect to the processing time but also regarding the image quality, it is also limited in its temporal and spatial resolution due to the mechanical movement of the gantry. This can lead to motion blurring, especially in the phases of fast cardiac motion during the RR interval. A motion-compensated reconstruction method for CT can be used to improve the resolution of the reconstructed image and to suppress motion blurring. Iterative techniques are a promising approach to solve this problem, since no direct inversion methods are known for arbitrarily moving objects. In this work, we therefore introduced motion compensation into image reconstruction. In order to determine the unknown cardiac motion, 3 different cardiac-motion estimation methodologies were implemented. Visual and quantitative assessment of the method in a number of applications, including: phantoms; cardiac CT reconstructions; Region of Interest (ROI) CT reconstructions of left and right coronaries of several clinical patients, confirmed its potential

    The Estimation and Correction of Rigid Motion in Helical Computed Tomography

    Get PDF
    X-ray CT is a tomographic imaging tool used in medicine and industry. Although technological developments have significantly improved the performance of CT systems, the accuracy of images produced by state-of-the-art scanners is still often limited by artefacts due to object motion. To tackle this problem, a number of motion estimation and compensation methods have been proposed. However, no methods with the demonstrated ability to correct for rigid motion in helical CT scans appear to exist. The primary aims of this thesis were to develop and evaluate effective methods for the estimation and correction of arbitrary six degree-of-freedom rigid motion in helical CT. As a first step, a method was developed to accurately estimate object motion during CT scanning with an optical tracking system, which provided sub-millimetre positional accuracy. Subsequently a motion correction method, which is analogous to a method previously developed for SPECT, was adapted to CT. The principle is to restore projection consistency by modifying the source-detector orbit in response to the measured object motion and reconstruct from the modified orbit with an iterative reconstruction algorithm. The feasibility of this method was demonstrated with a rapidly moving brain phantom, and the efficacy of correcting for a range of human head motions acquired from healthy volunteers was evaluated in simulations. The methods developed were found to provide accurate and artefact-free motion corrected images with most types of head motion likely to be encountered in clinical CT imaging, provided that the motion was accurately known. The method was also applied to CT data acquired on a hybrid PET/CT scanner demonstrating its versatility. Its clinical value may be significant by reducing the need for repeat scans (and repeat radiation doses), anesthesia and sedation in patient groups prone to motion, including young children
    • 

    corecore