4,883 research outputs found

    Articulatory features for robust visual speech recognition

    Full text link

    Articulatory features for robust visual speech recognition

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2004.Includes bibliographical references (p. 99-105).This thesis explores a novel approach to visual speech modeling. Visual speech, or a sequence of images of the speaker's face, is traditionally viewed as a single stream of contiguous units, each corresponding to a phonetic segment. These units are defined heuristically by mapping several visually similar phonemes to one visual phoneme, sometimes referred to as a viseme. However, experimental evidence shows that phonetic models trained from visual data are not synchronous in time with acoustic phonetic models, indicating that visemes may not be the most natural building blocks of visual speech. Instead, we propose to model the visual signal in terms of the underlying articulatory features. This approach is a natural extension of feature-based modeling of acoustic speech, which has been shown to increase robustness of audio-based speech recognition systems. We start by exploring ways of defining visual articulatory features: first in a data-driven manner, using a large, multi-speaker visual speech corpus, and then in a knowledge-driven manner, using the rules of speech production. Based on these studies, we propose a set of articulatory features, and describe a computational framework for feature-based visual speech recognition. Multiple feature streams are detected in the input image sequence using Support Vector Machines, and then incorporated in a Dynamic Bayesian Network to obtain the final word hypothesis. Preliminary experiments show that our approach increases viseme classification rates in visually noisy conditions, and improves visual word recognition through feature-based context modeling.by Ekaterina Saenko.S.M

    Parallel Reference Speaker Weighting for Kinematic-Independent Acoustic-to-Articulatory Inversion

    Get PDF
    Acoustic-to-articulatory inversion, the estimation of articulatory kinematics from an acoustic waveform, is a challenging but important problem. Accurate estimation of articulatory movements has the potential for significant impact on our understanding of speech production, on our capacity to assess and treat pathologies in a clinical setting, and on speech technologies such as computer aided pronunciation assessment and audio-video synthesis. However, because of the complex and speaker-specific relationship between articulation and acoustics, existing approaches for inversion do not generalize well across speakers. As acquiring speaker-specific kinematic data for training is not feasible in many practical applications, this remains an important and open problem. This paper proposes a novel approach to acoustic-to-articulatory inversion, Parallel Reference Speaker Weighting (PRSW), which requires no kinematic data for the target speaker and a small amount of acoustic adaptation data. PRSW hypothesizes that acoustic and kinematic similarities are correlated and uses speaker-adapted articulatory models derived from acoustically derived weights. The system was assessed using a 20-speaker data set of synchronous acoustic and Electromagnetic Articulography (EMA) kinematic data. Results demonstrate that by restricting the reference group to a subset consisting of speakers with strong individual speaker-dependent inversion performance, the PRSW method is able to attain kinematic-independent acoustic-to-articulatory inversion performance nearly matching that of the speaker-dependent model, with an average correlation of 0.62 versus 0.63. This indicates that given a sufficiently complete and appropriately selected reference speaker set for adaptation, it is possible to create effective articulatory models without kinematic training data

    Vid2speech: Speech Reconstruction from Silent Video

    Full text link
    Speechreading is a notoriously difficult task for humans to perform. In this paper we present an end-to-end model based on a convolutional neural network (CNN) for generating an intelligible acoustic speech signal from silent video frames of a speaking person. The proposed CNN generates sound features for each frame based on its neighboring frames. Waveforms are then synthesized from the learned speech features to produce intelligible speech. We show that by leveraging the automatic feature learning capabilities of a CNN, we can obtain state-of-the-art word intelligibility on the GRID dataset, and show promising results for learning out-of-vocabulary (OOV) words.Comment: Accepted for publication at ICASSP 201

    THE CHILD AND THE WORLD: How Children acquire Language

    Get PDF
    HOW CHILDREN ACQUIRE LANGUAGE Over the last few decades research into child language acquisition has been revolutionized by the use of ingenious new techniques which allow one to investigate what in fact infants (that is children not yet able to speak) can perceive when exposed to a stream of speech sound, the discriminations they can make between different speech sounds, differentspeech sound sequences and different words. However on the central features of the mystery, the extraordinarily rapid acquisition of lexicon and complex syntactic structures, little solid progress has been made. The questions being researched are how infants acquire and produce the speech sounds (phonemes) of the community language; how infants find words in the stream of speech; and how they link words to perceived objects or action, that is, discover meanings. In a recent general review in Nature of children's language acquisition, Patricia Kuhl also asked why we do not learn new languages as easily at 50 as at 5 and why computers have not cracked the human linguistic code. The motor theory of language function and origin makes possible a plausible account of child language acquisition generally from which answers can be derived also to these further questions. Why computers so far have been unable to 'crack' the language problem becomes apparent in the light of the motor theory account: computers can have no natural relation between words and their meanings; they have no conceptual store to which the network of words is linked nor do they have the innate aspects of language functioning - represented by function words; computers have no direct links between speech sounds and movement patterns and they do not have the instantly integrated neural patterning underlying thought - they necessarily operate serially and hierarchically. Adults find the acquisition of a new language much more difficult than children do because they are already neurally committed to the link between the words of their first language and the elements in their conceptual store. A second language being acquired by an adult is in direct competition for neural space with the network structures established for the first language
    • …
    corecore