4,348 research outputs found

    DeepPose: Human Pose Estimation via Deep Neural Networks

    Full text link
    We propose a method for human pose estimation based on Deep Neural Networks (DNNs). The pose estimation is formulated as a DNN-based regression problem towards body joints. We present a cascade of such DNN regressors which results in high precision pose estimates. The approach has the advantage of reasoning about pose in a holistic fashion and has a simple but yet powerful formulation which capitalizes on recent advances in Deep Learning. We present a detailed empirical analysis with state-of-art or better performance on four academic benchmarks of diverse real-world images.Comment: IEEE Conference on Computer Vision and Pattern Recognition, 201

    Human Pose Estimation using Global and Local Normalization

    Full text link
    In this paper, we address the problem of estimating the positions of human joints, i.e., articulated pose estimation. Recent state-of-the-art solutions model two key issues, joint detection and spatial configuration refinement, together using convolutional neural networks. Our work mainly focuses on spatial configuration refinement by reducing variations of human poses statistically, which is motivated by the observation that the scattered distribution of the relative locations of joints e.g., the left wrist is distributed nearly uniformly in a circular area around the left shoulder) makes the learning of convolutional spatial models hard. We present a two-stage normalization scheme, human body normalization and limb normalization, to make the distribution of the relative joint locations compact, resulting in easier learning of convolutional spatial models and more accurate pose estimation. In addition, our empirical results show that incorporating multi-scale supervision and multi-scale fusion into the joint detection network is beneficial. Experiment results demonstrate that our method consistently outperforms state-of-the-art methods on the benchmarks.Comment: ICCV201

    Combining Local Appearance and Holistic View: Dual-Source Deep Neural Networks for Human Pose Estimation

    Full text link
    We propose a new learning-based method for estimating 2D human pose from a single image, using Dual-Source Deep Convolutional Neural Networks (DS-CNN). Recently, many methods have been developed to estimate human pose by using pose priors that are estimated from physiologically inspired graphical models or learned from a holistic perspective. In this paper, we propose to integrate both the local (body) part appearance and the holistic view of each local part for more accurate human pose estimation. Specifically, the proposed DS-CNN takes a set of image patches (category-independent object proposals for training and multi-scale sliding windows for testing) as the input and then learns the appearance of each local part by considering their holistic views in the full body. Using DS-CNN, we achieve both joint detection, which determines whether an image patch contains a body joint, and joint localization, which finds the exact location of the joint in the image patch. Finally, we develop an algorithm to combine these joint detection/localization results from all the image patches for estimating the human pose. The experimental results show the effectiveness of the proposed method by comparing to the state-of-the-art human-pose estimation methods based on pose priors that are estimated from physiologically inspired graphical models or learned from a holistic perspective.Comment: CVPR 201

    Cascaded 3D Full-body Pose Regression from Single Depth Image at 100 FPS

    Full text link
    There are increasing real-time live applications in virtual reality, where it plays an important role in capturing and retargetting 3D human pose. But it is still challenging to estimate accurate 3D pose from consumer imaging devices such as depth camera. This paper presents a novel cascaded 3D full-body pose regression method to estimate accurate pose from a single depth image at 100 fps. The key idea is to train cascaded regressors based on Gradient Boosting algorithm from pre-recorded human motion capture database. By incorporating hierarchical kinematics model of human pose into the learning procedure, we can directly estimate accurate 3D joint angles instead of joint positions. The biggest advantage of this model is that the bone length can be preserved during the whole 3D pose estimation procedure, which leads to more effective features and higher pose estimation accuracy. Our method can be used as an initialization procedure when combining with tracking methods. We demonstrate the power of our method on a wide range of synthesized human motion data from CMU mocap database, Human3.6M dataset and real human movements data captured in real time. In our comparison against previous 3D pose estimation methods and commercial system such as Kinect 2017, we achieve the state-of-the-art accuracy

    Robust Estimation of 3D Human Poses from a Single Image

    Get PDF
    Human pose estimation is a key step to action recognition. We propose a method of estimating 3D human poses from a single image, which works in conjunction with an existing 2D pose/joint detector. 3D pose estimation is challenging because multiple 3D poses may correspond to the same 2D pose after projection due to the lack of depth information. Moreover, current 2D pose estimators are usually inaccurate which may cause errors in the 3D estimation. We address the challenges in three ways: (i) We represent a 3D pose as a linear combination of a sparse set of bases learned from 3D human skeletons. (ii) We enforce limb length constraints to eliminate anthropomorphically implausible skeletons. (iii) We estimate a 3D pose by minimizing the L1L_1-norm error between the projection of the 3D pose and the corresponding 2D detection. The L1L_1-norm loss term is robust to inaccurate 2D joint estimations. We use the alternating direction method (ADM) to solve the optimization problem efficiently. Our approach outperforms the state-of-the-arts on three benchmark datasets
    • …
    corecore