1,036 research outputs found

    Multi-View Face Recognition From Single RGBD Models of the Faces

    Get PDF
    This work takes important steps towards solving the following problem of current interest: Assuming that each individual in a population can be modeled by a single frontal RGBD face image, is it possible to carry out face recognition for such a population using multiple 2D images captured from arbitrary viewpoints? Although the general problem as stated above is extremely challenging, it encompasses subproblems that can be addressed today. The subproblems addressed in this work relate to: (1) Generating a large set of viewpoint dependent face images from a single RGBD frontal image for each individual; (2) using hierarchical approaches based on view-partitioned subspaces to represent the training data; and (3) based on these hierarchical approaches, using a weighted voting algorithm to integrate the evidence collected from multiple images of the same face as recorded from different viewpoints. We evaluate our methods on three datasets: a dataset of 10 people that we created and two publicly available datasets which include a total of 48 people. In addition to providing important insights into the nature of this problem, our results show that we are able to successfully recognize faces with accuracies of 95% or higher, outperforming existing state-of-the-art face recognition approaches based on deep convolutional neural networks

    Photorealistic retrieval of occluded facial information using a performance-driven face model

    Get PDF
    Facial occlusions can cause both human observers and computer algorithms to fail in a variety of important tasks such as facial action analysis and expression classification. This is because the missing information is not reconstructed accurately enough for the purpose of the task in hand. Most current computer methods that are used to tackle this problem implement complex three-dimensional polygonal face models that are generally timeconsuming to produce and unsuitable for photorealistic reconstruction of missing facial features and behaviour. In this thesis, an image-based approach is adopted to solve the occlusion problem. A dynamic computer model of the face is used to retrieve the occluded facial information from the driver faces. The model consists of a set of orthogonal basis actions obtained by application of principal component analysis (PCA) on image changes and motion fields extracted from a sequence of natural facial motion (Cowe 2003). Examples of occlusion affected facial behaviour can then be projected onto the model to compute coefficients of the basis actions and thus produce photorealistic performance-driven animations. Visual inspection shows that the PCA face model recovers aspects of expressions in those areas occluded in the driver sequence, but the expression is generally muted. To further investigate this finding, a database of test sequences affected by a considerable set of artificial and natural occlusions is created. A number of suitable metrics is developed to measure the accuracy of the reconstructions. Regions of the face that are most important for performance-driven mimicry and that seem to carry the best information about global facial configurations are revealed using Bubbles, thus in effect identifying facial areas that are most sensitive to occlusions. Recovery of occluded facial information is enhanced by applying an appropriate scaling factor to the respective coefficients of the basis actions obtained by PCA. This method improves the reconstruction of the facial actions emanating from the occluded areas of the face. However, due to the fact that PCA produces bases that encode composite, correlated actions, such an enhancement also tends to affect actions in non-occluded areas of the face. To avoid this, more localised controls for facial actions are produced using independent component analysis (ICA). Simple projection of the data onto an ICA model is not viable due to the non-orthogonality of the extracted bases. Thus occlusion-affected mimicry is first generated using the PCA model and then enhanced by accordingly manipulating the independent components that are subsequently extracted from the mimicry. This combination of methods yields significant improvements and results in photorealistic reconstructions of occluded facial actions

    Representations for Cognitive Vision : a Review of Appearance-Based, Spatio-Temporal, and Graph-Based Approaches

    Get PDF
    The emerging discipline of cognitive vision requires a proper representation of visual information including spatial and temporal relationships, scenes, events, semantics and context. This review article summarizes existing representational schemes in computer vision which might be useful for cognitive vision, a and discusses promising future research directions. The various approaches are categorized according to appearance-based, spatio-temporal, and graph-based representations for cognitive vision. While the representation of objects has been covered extensively in computer vision research, both from a reconstruction as well as from a recognition point of view, cognitive vision will also require new ideas how to represent scenes. We introduce new concepts for scene representations and discuss how these might be efficiently implemented in future cognitive vision systems

    Advances in Monocular Exemplar-based Human Body Pose Analysis: Modeling, Detection and Tracking

    Get PDF
    Esta tesis contribuye en el análisis de la postura del cuerpo humano a partir de secuencias de imágenes adquiridas con una sola cámara. Esta temática presenta un amplio rango de potenciales aplicaciones en video-vigilancia, video-juegos o aplicaciones biomédicas. Las técnicas basadas en patrones han tenido éxito, sin embargo, su precisión depende de la similitud del punto de vista de la cámara y de las propiedades de la escena entre las imágenes de entrenamiento y las de prueba. Teniendo en cuenta un conjunto de datos de entrenamiento capturado mediante un número reducido de cámaras fijas, paralelas al suelo, se han identificado y analizado tres escenarios posibles con creciente nivel de dificultad: 1) una cámara estática paralela al suelo, 2) una cámara de vigilancia fija con un ángulo de visión considerablemente diferente, y 3) una secuencia de video capturada con una cámara en movimiento o simplemente una sola imagen estática

    A Survey on Human Activity Analysis Techniques

    Get PDF
    Human Activity Recognition(HAR) is Popular research topic in Computer vision and Image Processing area. This Paper Provide an exhaustive survey on the Entire Process of identify or Recognize Human activity. Basically, There are Four steps are involved in HAR process, which are Pre-processing, Feature extraction, Training, and Classification of different activities from video. The need of data preprocessing , and segmentation based on camera movements are presented. This paper provide detailed survey on different features for HAR, feature extraction and selection method , and Classification methods with advantages and disadvantages. Finally, A brief discussion about various classification techniques are presented

    Gesture recognition using principal component analysis, multi-scale theory, and hidden Markov models

    Get PDF
    In this thesis, a dynamic gesture recognition system is presented which requires no special hardware other than a Web cam . The system is based on a novel method combining Principal Component Analysis (PCA) with hierarchical m ulti-scale theory and Discrete Hidden Markov Models (DHMMs). We use a hierarchical decision tree based on multi-scale theory. Firstly we convolve all members of the training data with a Gaussian kernel, w h ich blu rs d iffe ren c e s b e tw e en images and reduces their separation in feature space. Th is reduces the number of eigen vectors needed to describe the data. A principal component space is computed from the convolved data. We divide the data in this space in to several clusters using the £-means algorithm. Then the level of b lurring is reduced and PCA is applied to each of the clusters separately. A new principal component space is formed from each cluster. Each of these spaces is then divided in to clusters and the process is repeated. We thus produce a tree of principal component spaces where each level of the tree represents a different degree of blurring. The search time is then proportional to the depth of the tree, which makes it possible to search hundreds of gestures with very little computational cost. The output of the decision tree is then input in to the DHMM recogniser to recognise temporal information

    Face and Gesture Recognition for Human-Robot Interaction

    Get PDF
    corecore