1,126 research outputs found

    Measurements and Modeling of Transient Blood Flow Perturbations Induced by Brief Somatosensory Stimulation

    Get PDF
    Proper interpretation of BOLD fMRI and other common functional imaging methods requires an understanding of neurovascular coupling. We used laser speckle-contrast optical imaging to measure blood-flow responses in rat somatosensory cortex elicited by brief (2 s) forepaw stimulation. Results show a large increase in local blood flow speed followed by an undershoot and possible late-time oscillations. The blood flow measurements were modeled using the impulse response of a simple linear network, a four-element windkessel. This model yielded excellent fits to the detailed time courses of activated regions. The four-element windkessel model thus provides a simple explanation and interpretation of the transient blood-flow response, both its initial peak and its late-time behavior

    Functional Imaging of Autonomic Regulation: Methods and Key Findings.

    Get PDF
    Central nervous system processing of autonomic function involves a network of regions throughout the brain which can be visualized and measured with neuroimaging techniques, notably functional magnetic resonance imaging (fMRI). The development of fMRI procedures has both confirmed and extended earlier findings from animal models, and human stroke and lesion studies. Assessments with fMRI can elucidate interactions between different central sites in regulating normal autonomic patterning, and demonstrate how disturbed systems can interact to produce aberrant regulation during autonomic challenges. Understanding autonomic dysfunction in various illnesses reveals mechanisms that potentially lead to interventions in the impairments. The objectives here are to: (1) describe the fMRI neuroimaging methodology for assessment of autonomic neural control, (2) outline the widespread, lateralized distribution of function in autonomic sites in the normal brain which includes structures from the neocortex through the medulla and cerebellum, (3) illustrate the importance of the time course of neural changes when coordinating responses, and how those patterns are impacted in conditions of sleep-disordered breathing, and (4) highlight opportunities for future research studies with emerging methodologies. Methodological considerations specific to autonomic testing include timing of challenges relative to the underlying fMRI signal, spatial resolution sufficient to identify autonomic brainstem nuclei, blood pressure, and blood oxygenation influences on the fMRI signal, and the sustained timing, often measured in minutes of challenge periods and recovery. Key findings include the lateralized nature of autonomic organization, which is reminiscent of asymmetric motor, sensory, and language pathways. Testing brain function during autonomic challenges demonstrate closely-integrated timing of responses in connected brain areas during autonomic challenges, and the involvement with brain regions mediating postural and motoric actions, including respiration, and cardiac output. The study of pathological processes associated with autonomic disruption shows susceptibilities of different brain structures to altered timing of neural function, notably in sleep disordered breathing, such as obstructive sleep apnea and congenital central hypoventilation syndrome. The cerebellum, in particular, serves coordination roles for vestibular stimuli and blood pressure changes, and shows both injury and substantially altered timing of responses to pressor challenges in sleep-disordered breathing conditions. The insights into central autonomic processing provided by neuroimaging have assisted understanding of such regulation, and may lead to new treatment options for conditions with disrupted autonomic function

    A Model for Transient Oxygen Delivery in Cerebral Cortex

    Get PDF
    Popular hemodynamic brain imaging methods, such as blood oxygen-level dependent functional magnetic resonance imaging (BOLD fMRI), would benefit from a detailed understanding of the mechanisms by which oxygen is delivered to the cortex in response to brief periods of neural activity. Tissue oxygen responses in visual cortex following brief visual stimulation exhibit rich dynamics, including an early decrease in oxygen concentration, a subsequent large increase in concentration, and substantial late-time oscillations (“ringing”). We introduce a model that explains the full time-course of these observations made by Thompson et al. (2003). The model treats oxygen transport with a set of differential equations that include a combination of flow and diffusion in a three-compartment (intravascular, extravascular, and intracellular) system. Blood flow in this system is modeled using the impulse response of a lumped linear system that includes an inertive element; this provides a simple biophysical mechanism for the ringing. The model system is solved numerically to produce excellent fits to measurements of tissue oxygen. The results give insight into the dynamics of cerebral oxygen transfer, and can serve as the starting point to understand BOLD fMRI measurements

    Associations between regional brain physiology and trait impulsivity, motor inhibition, and impaired control over drinking

    Get PDF
    Trait impulsivity and poor inhibitory control are well-established risk factors for alcohol misuse, yet little is known about the associated neurobiological endophenotypes. Here we examined correlations among brain physiology and self-reported trait impulsive behavior, impaired control over drinking, and a behavioral measure of response inhibition. A sample of healthy drinkers (n = 117) completed a pulsed arterial spin labeling (PASL) scan to quantify resting regional cerebral blood flow (rCBF), as well as measures of self-reported impulsivity (Eysenck I7 Impulsivity scale) and impaired control over drinking. A subset of subjects (n = 40) performed a stop signal task during blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging to assess brain regions involved in response inhibition. Eysenck I7 scores were inversely related to blood flow in the right precentral gyrus. Significant BOLD activation during response inhibition occurred in an overlapping right frontal motor/premotor region. Moreover, impaired control over drinking was associated with reduced BOLD response in the same region. These findings suggest that impulsive personality and impaired control over drinking are associated with brain physiology in areas implicated in response inhibition. This is consistent with the idea that difficulty controlling behavior is due in part to impairment in motor restraint systems

    The Neurometabolic Underpinnings of fMRI BOLD Dynamics

    Get PDF

    Functional Magnetic Resonance Imaging in Conscious Animals: A New Tool in Behavioural Neuroscience Research

    Get PDF
    Functional magnetic resonance imaging (fMRI) is a unique window to the brain, enabling scientists to follow changes in brain activity in response to hormones, ageing, environment, drugs of abuse and other stimuli. In this review, we present a general background to fMRI and the different imaging modalities that can be used in fMRI studies. Included are examples of the application of fMRI in behavioural neuroscience research, along with discussion of the advantages and disadvantages of this technology

    Characterisation of the Haemodynamic Response Function (HRF) in the neonatal brain using functional MRI

    Get PDF
    Background: Preterm birth is associated with a marked increase in the risk of later neurodevelopmental impairment. With the incidence rising, novel tools are needed to provide an improved understanding of the underlying pathology and better prognostic information. Functional Magnetic Resonance Imaging (fMRI) with Blood Oxygen Level Dependent (BOLD) contrast has the potential to add greatly to the knowledge gained through traditional MRI techniques. However, it has been rarely used with neonatal subjects due to difficulties in application and inconsistent results. Central to this is uncertainity regarding the effects of early brain development on the Haemodynamic Response Function (HRF), knowledge of which is fundamental to fMRI methodology and analysis. Hypotheses: (1) Well localised and positive BOLD functional responses can be identified in the neonatal brain. (2) The morphology of the neonatal HRF differs significantly during early human development. (3) The application of an age-appropriate HRF will improve the identification of functional responses in neonatal fMRI studies. Methods: To test these hypotheses, a systematic fMRI study of neonatal subjects was carried out using a custom made somatosensory stimulus, and an adapted study design and analysis pipeline. The neonatal HRF was then characterised using an event related study design. The potential future application of the findings was then tested in a series of small experiments. Results: Well localised and positive BOLD functional responses were identified in neonatal subjects, with a maturational tendency towards an increasingly complex pattern of activation. A positive amplitude HRF was identified in neonatal subjects, with a maturational trend of a decreasing time-to-peak and increasing positive peak amplitude. Application of the empirical HRF significantly improved the precision of analysis in further fMRI studies. Conclusions: fMRI can be used to study functional activity in the neonatal brain, and may provide vital new information about both development and pathology
    corecore