545 research outputs found

    Integrated anaesthesia software : data acquisition, controlled infusion schemes and intelligent alarms

    Get PDF
    Tese de doutoramento. Engenharia Biomédica. Universidade do Porto. Faculdade de Engenharia. 201

    Combining Synthesis of Cardiorespiratory Signals and Artifacts with Deep Learning for Robust Vital Sign Estimation

    Get PDF
    Healthcare has been remarkably morphing on the account of Big Data. As Machine Learning (ML) consolidates its place in simpler clinical chores, more complex Deep Learning (DL) algorithms have struggled to keep up, despite their superior capabilities. This is mainly attributed to the need for large amounts of data for training, which the scientific community is unable to satisfy. The number of promising DL algorithms is considerable, although solutions directly targeting the shortage of data lack. Currently, dynamical generative models are the best bet, but focus on single, classical modalities and tend to complicate significantly with the amount of physiological effects they can simulate. This thesis aims at providing and validating a framework, specifically addressing the data deficit in the scope of cardiorespiratory signals. Firstly, a multimodal statistical synthesizer was designed to generate large, annotated artificial signals. By expressing data through coefficients of pre-defined, fitted functions and describing their dependence with Gaussian copulas, inter- and intra-modality associations were learned. Thereafter, new coefficients are sampled to generate artificial, multimodal signals with the original physiological dynamics. Moreover, normal and pathological beats along with artifacts were included by employing Markov models. Secondly, a convolutional neural network (CNN) was conceived with a novel sensor-fusion architecture and trained with synthesized data under real-world experimental conditions to evaluate how its performance is affected. Both the synthesizer and the CNN not only performed at state of the art level but also innovated with multiple types of generated data and detection error improvements, respectively. Cardiorespiratory data augmentation corrected performance drops when not enough data is available, enhanced the CNN’s ability to perform on noisy signals and to carry out new tasks when introduced to, otherwise unavailable, types of data. Ultimately, the framework was successfully validated showing potential to leverage future DL research on Cardiology into clinical standards

    IoT Applications Computing

    Get PDF
    The evolution of emerging and innovative technologies based on Industry 4.0 concepts are transforming society and industry into a fully digitized and networked globe. Sensing, communications, and computing embedded with ambient intelligence are at the heart of the Internet of Things (IoT), the Industrial Internet of Things (IIoT), and Industry 4.0 technologies with expanding applications in manufacturing, transportation, health, building automation, agriculture, and the environment. It is expected that the emerging technology clusters of ambient intelligence computing will not only transform modern industry but also advance societal health and wellness, as well as and make the environment more sustainable. This book uses an interdisciplinary approach to explain the complex issue of scientific and technological innovations largely based on intelligent computing

    Aerospace Medicine and Biology: A continuing bibliography with indexes (supplement 245)

    Get PDF
    This bibliography lists 363 reports, articles and other documents introduced into the NASA scientific and technical information system in April 1983

    WOFEX 2021 : 19th annual workshop, Ostrava, 1th September 2021 : proceedings of papers

    Get PDF
    The workshop WOFEX 2021 (PhD workshop of Faculty of Electrical Engineer-ing and Computer Science) was held on September 1st September 2021 at the VSB – Technical University of Ostrava. The workshop offers an opportunity for students to meet and share their research experiences, to discover commonalities in research and studentship, and to foster a collaborative environment for joint problem solving. PhD students are encouraged to attend in order to ensure a broad, unconfined discussion. In that view, this workshop is intended for students and researchers of this faculty offering opportunities to meet new colleagues.Ostrav

    Efficient Decision Support Systems

    Get PDF
    This series is directed to diverse managerial professionals who are leading the transformation of individual domains by using expert information and domain knowledge to drive decision support systems (DSSs). The series offers a broad range of subjects addressed in specific areas such as health care, business management, banking, agriculture, environmental improvement, natural resource and spatial management, aviation administration, and hybrid applications of information technology aimed to interdisciplinary issues. This book series is composed of three volumes: Volume 1 consists of general concepts and methodology of DSSs; Volume 2 consists of applications of DSSs in the biomedical domain; Volume 3 consists of hybrid applications of DSSs in multidisciplinary domains. The book is shaped decision support strategies in the new infrastructure that assists the readers in full use of the creative technology to manipulate input data and to transform information into useful decisions for decision makers

    Using machine learning models to predict oxygen saturation following ventilator support adjustment in critically ill Children : a single center pilot study

    Get PDF
    Clinical experts in mechanical ventilation are not continuously at each patient’s bedside in an intensive care unit to adjust mechanical ventilation settings and to analyze the impact of ventilator settings adjustments on gas exchange. The development of clinical decision support systems analyzing patients’ data in real time offers an opportunity to fill this gap. The objective of this study was to determine whether a machine learning predictive model could be trained on a set of clinical data and used to predict hemoglobin oxygen saturation 5 min after a ventilator setting change. Data of mechanically ventilated children admitted between May 2015 and April 2017 were included and extracted from a high-resolution research database. More than 7.105 rows of data were obtained from 610 patients, discretized into 3 class labels. Due to data imbalance, four different data balancing process were applied and two machine learning models (artificial neural network and Bootstrap aggregation of complex decision trees) were trained and tested on these four different balanced datasets. The best model predicted SpO2 with accuracies of 76%, 62% and 96% for the SpO2 class “ 92%”, respectively. This pilot study using machine learning predictive model resulted in an algorithm with good accuracy. To obtain a robust algorithm, more data are needed, suggesting the need of multicenter pediatric intensive care high resolution databases
    corecore