626 research outputs found

    GNSS array-based acquisition: theory and implementation

    Get PDF
    This Dissertation addresses the signal acquisition problem using antenna arrays in the general framework of Global Navigation Satellite Systems (GNSS) receivers. The term GNSS classi es those navigation systems based on a constellation of satellites, which emit ranging signals useful for positioning. Although the American GPS is already available, which coexists with the renewed Russian Glonass, the forthcoming European contribution (Galileo) along with the Chinese Compass will be operative soon. Therefore, a variety of satellite constellations and signals will be available in the next years. GNSSs provide the necessary infrastructures for a myriad of applications and services that demand a robust and accurate positioning service. The positioning availability must be guaranteed all the time, specially in safety-critical and mission-critical services. Examining the threats against the service availability, it is important to take into account that all the present and the forthcoming GNSSs make use of Code Division Multiple Access (CDMA) techniques. The ranging signals are received with very low precorrelation signal-to-noise ratio (in the order of ���22 dB for a receiver operating at the Earth surface). Despite that the GNSS CDMA processing gain o ers limited protection against Radio Frequency interferences (RFI), an interference with a interference-to-signal power ratio that exceeds the processing gain can easily degrade receivers' performance or even deny completely the GNSS service, specially conventional receivers equipped with minimal or basic level of protection towards RFIs. As a consequence, RFIs (either intentional or unintentional) remain as the most important cause of performance degradation. A growing concern of this problem has appeared in recent times. Focusing our attention on the GNSS receiver, it is known that signal acquisition has the lowest sensitivity of the whole receiver operation, and, consequently, it becomes the performance bottleneck in the presence of interfering signals. A single-antenna receiver can make use of time and frequency diversity to mitigate interferences, even though the performance of these techniques is compromised in low SNR scenarios or in the presence of wideband interferences. On the other hand, antenna arrays receivers can bene t from spatial-domain processing, and thus mitigate the e ects of interfering signals. Spatial diversity has been traditionally applied to the signal tracking operation of GNSS receivers. However, initial tracking conditions depend on signal acquisition, and there are a number of scenarios in which the acquisition process can fail as stated before. Surprisingly, to the best of our knowledge, the application of antenna arrays to GNSS signal acquisition has not received much attention. This Thesis pursues a twofold objective: on the one hand, it proposes novel arraybased acquisition algorithms using a well-established statistical detection theory framework, and on the other hand demonstrates both their real-time implementation feasibility and their performance in realistic scenarios. The Dissertation starts with a brief introduction to GNSS receivers fundamentals, providing some details about the navigation signals structure and the receiver's architecture of both GPS and Galileo systems. It follows with an analysis of GNSS signal acquisition as a detection problem, using the Neyman-Pearson (NP) detection theory framework and the single-antenna acquisition signal model. The NP approach is used here to derive both the optimum detector (known as clairvoyant detector ) and the sov called Generalized Likelihood Ratio Test (GLRT) detector, which is the basis of almost all of the current state-of-the-art acquisition algorithms. Going further, a novel detector test statistic intended to jointly acquire a set of GNSS satellites is obtained, thus reducing both the acquisition time and the required computational resources. The eff ects of the front-end bandwidth in the acquisition are also taken into account. Then, the GLRT is extended to the array signal model to obtain an original detector which is able to mitigate temporally uncorrelated interferences even if the array is unstructured and moderately uncalibrated, thus becoming one of the main contributions of this Dissertation. The key statistical feature is the assumption of an arbitrary and unknown covariance noise matrix, which attempts to capture the statistical behavior of the interferences and other non-desirable signals, while exploiting the spatial dimension provided by antenna arrays. Closed form expressions for the detection and false alarm probabilities are provided. Performance and interference rejection capability are modeled and compared both to their theoretical bound. The proposed array-based acquisition algorithm is also compared to conventional acquisition techniques performed after blind null-steering beamformer approaches, such as the power minimization algorithm. Furthermore, the detector is analyzed under realistic conditions, accounting for the presence of errors in the covariance matrix estimation, residual Doppler and delay errors, and signal quantization e ects. Theoretical results are supported by Monte Carlo simulations. As another main contribution of this Dissertation, the second part of the work deals with the design and the implementation of a novel Field Programmable Gate Array (FPGA)-based GNSS real-time antenna-array receiver platform. The platform is intended to be used as a research tool tightly coupled with software de ned GNSS receivers. A complete signal reception chain including the antenna array and the multichannel phase-coherent RF front-end for the GPS L1/ Galileo E1 was designed, implemented and tested. The details of the digital processing section of the platform, such as the array signal statistics extraction modules, are also provided. The design trade-o s and the implementation complexities were carefully analyzed and taken into account. As a proof-of-concept, the problem of GNSS vulnerability to interferences was addressed using the presented platform. The array-based acquisition algorithms introduced in this Dissertation were implemented and tested under realistic conditions. The performance of the algorithms were compared to single antenna acquisition techniques, measured under strong in-band interference scenarios, including narrow/wide band interferers and communication signals. The platform was designed to demonstrate the implementation feasibility of novel array-based acquisition algorithms, leaving the rest of the receiver operations (mainly, tracking, navigation message decoding, code and phase observables, and basic Position, Velocity and Time (PVT) solution) to a Software De ned Radio (SDR) receiver running in a personal computer, processing in real-time the spatially- ltered signal sample stream coming from the platform using a Gigabit Ethernet bus data link. In the last part of this Dissertation, we close the loop by designing and implementing such software receiver. The proposed software receiver targets multi-constellation/multi-frequency architectures, pursuing the goals of e ciency, modularity, interoperability, and exibility demanded by user domains that require non-standard features, such as intermediate signals or data extraction and algorithms interchangeability. In this context, we introduce an open-source, real-time GNSS software de ned receiver (so-named GNSS-SDR) that contributes with several novel features such as the use of software design patterns and shared memory techniques to manage e ciently the data ow between receiver blocks, the use of hardware-accelerated instructions for time-consuming vector operations like carrier wipe-o and code correlation, and the availability to compile and run on multiple software platforms and hardware architectures. At this time of writing (April 2012), the receiver enjoys of a 2-dimensional Distance Root Mean Square (DRMS) error lower than 2 meters for a GPS L1 C/A scenario with 8 satellites in lock and a Horizontal Dilution Of Precision (HDOP) of 1.2.Esta tesis aborda el problema de la adquisición de la señal usando arrays de antenas en el marco general de los receptores de Sistemas Globales de Navegación por Satélite (GNSS). El término GNSS engloba aquellos sistemas de navegación basados en una constelación de satélites que emiten señales útiles para el posicionamiento. Aunque el GPS americano ya está disponible, coexistiendo con el renovado sistema ruso GLONASS, actualmente se está realizando un gran esfuerzo para que la contribución europea (Galileo), junto con el nuevo sistema chino Compass, estén operativos en breve. Por lo tanto, una gran variedad de constelaciones de satélites y señales estarán disponibles en los próximos años. Estos sistemas proporcionan las infraestructuras necesarias para una multitud de aplicaciones y servicios que demandan un servicio de posicionamiento confiable y preciso. La disponibilidad de posicionamiento se debe garantizar en todo momento, especialmente en los servicios críticos para la seguridad de las personas y los bienes. Cuando examinamos las amenazas de la disponibilidad del servicio que ofrecen los GNSSs, es importante tener en cuenta que todos los sistemas presentes y los sistemas futuros ya planificados hacen uso de técnicas de multiplexación por división de código (CDMA). Las señales transmitidas por los satélites son recibidas con una relación señal-ruido (SNR) muy baja, medida antes de la correlación (del orden de -22 dB para un receptor ubicado en la superficie de la tierra). A pesar de que la ganancia de procesado CDMA ofrece una protección inherente contra las interferencias de radiofrecuencia (RFI), esta protección es limitada. Una interferencia con una relación de potencia de interferencia a potencia de la señal que excede la ganancia de procesado puede degradar el rendimiento de los receptores o incluso negar por completo el servicio GNSS. Este riesgo es especialmente importante en receptores convencionales equipados con un nivel mínimo o básico de protección frente las RFIs. Como consecuencia, las RFIs (ya sean intencionadas o no intencionadas), se identifican como la causa más importante de la degradación del rendimiento en GNSS. El problema esta causando una preocupación creciente en los últimos tiempos, ya que cada vez hay más servicios que dependen de los GNSSs Si centramos la atención en el receptor GNSS, es conocido que la adquisición de la señal tiene la menor sensibilidad de todas las operaciones del receptor, y, en consecuencia, se convierte en el factor limitador en la presencia de señales interferentes. Un receptor de una sola antena puede hacer uso de la diversidad en tiempo y frecuencia para mitigar las interferencias, aunque el rendimiento de estas técnicas se ve comprometido en escenarios con baja SNR o en presencia de interferencias de banda ancha. Por otro lado, los receptores basados en múltiples antenas se pueden beneficiar del procesado espacial, y por lo tanto mitigar los efectos de las señales interferentes. La diversidad espacial se ha aplicado tradicionalmente a la operación de tracking de la señal en receptores GNSS. Sin embargo, las condiciones iniciales del tracking dependen del resultado de la adquisición de la señal, y como hemos visto antes, hay un número de situaciones en las que el proceso de adquisición puede fallar. En base a nuestro grado de conocimiento, la aplicación de los arrays de antenas a la adquisición de la señal GNSS no ha recibido mucha atención, sorprendentemente. El objetivo de esta tesis doctoral es doble: por un lado, proponer nuevos algoritmos para la adquisición basados en arrays de antenas, usando como marco la teoría de la detección de señal estadística, y por otro lado, demostrar la viabilidad de su implementación y ejecución en tiempo real, así como su medir su rendimiento en escenarios realistas. La tesis comienza con una breve introducción a los fundamentos de los receptores GNSS, proporcionando algunos detalles sobre la estructura de las señales de navegación y la arquitectura del receptor aplicada a los sistemas GPS y Galileo. Continua con el análisis de la adquisición GNSS como un problema de detección, aplicando la teoría del detector Neyman-Pearson (NP) y el modelo de señal de una única antena. El marco teórico del detector NP se utiliza aquí para derivar tanto el detector óptimo (conocido como detector clarividente) como la denominada Prueba Generalizada de la Razón de Verosimilitud (en inglés, Generalized Likelihood Ratio Test (GLRT)), que forma la base de prácticamente todos los algoritmos de adquisición del estado del arte actual. Yendo más lejos, proponemos un nuevo detector diseñado para adquirir simultáneamente un conjunto de satélites, por lo tanto, obtiene una reducción del tiempo de adquisición y de los recursos computacionales necesarios en el proceso, respecto a las técnicas convencionales. El efecto del ancho de banda del receptor también se ha tenido en cuenta en los análisis. A continuación, el detector GLRT se extiende al modelo de señal de array de antenas para obtener un detector nuevo que es capaz de mitigar interferencias no correladas temporalmente, incluso utilizando arrays no estructurados y moderadamente descalibrados, convirtiéndose así en una de las principales aportaciones de esta tesis. La clave del detector es asumir una matriz de covarianza de ruido arbitraria y desconocida en el modelo de señal, que trata de captar el comportamiento estadístico de las interferencias y otras señales no deseadas, mientras que utiliza la dimensión espacial proporcionada por los arrays de antenas. Se han derivado las expresiones que modelan las probabilidades teóricas de detección y falsa alarma. El rendimiento del detector y su capacidad de rechazo a interferencias se han modelado y comparado con su límite teórico. El algoritmo propuesto también ha sido comparado con técnicas de adquisición convencionales, ejecutadas utilizando la salida de conformadores de haz que utilizan algoritmos de filtrado de interferencias, como el algoritmo de minimización de la potencia. Además, el detector se ha analizado bajo condiciones realistas, representadas con la presencia de errores en la estimación de covarianzas, errores residuales en la estimación del Doppler y el retardo de señal, y los efectos de la cuantificación. Los resultados teóricos se apoyan en simulaciones de Monte Carlo. Como otra contribución principal de esta tesis, la segunda parte del trabajo trata sobre el diseño y la implementación de una nueva plataforma para receptores GNSS en tiempo real basados en array de antenas que utiliza la tecnología de matriz programable de puertas lógicas (en ingles Field Programmable Gate Array (FPGA)). La plataforma está destinada a ser utilizada como una herramienta de investigación estrechamente acoplada con receptores GNSS definidos por software. Se ha diseñado, implementado y verificado la cadena completa de recepción, incluyendo el array de antenas y el front-end multi-canal para las señales GPS L1 y Galileo E1. El documento explica en detalle el procesado de señal que se realiza, como por ejemplo, la implementación del módulo de extracción de estadísticas de la señal. Los compromisos de diseño y las complejidades derivadas han sido cuidadosamente analizadas y tenidas en cuenta. La plataforma ha sido utilizada como prueba de concepto para solucionar el problema presentado de la vulnerabilidad del GNSS a las interferencias. Los algoritmos de adquisición introducidos en esta tesis se han implementado y probado en condiciones realistas. El rendimiento de los algoritmos se comparó con las técnicas de adquisición basadas en una sola antena. Se han realizado pruebas en escenarios que contienen interferencias dentro de la banda GNSS, incluyendo interferencias de banda estrecha y banda ancha y señales de comunicación. La plataforma fue diseñada para demostrar la viabilidad de la implementación de nuevos algoritmos de adquisición basados en array de antenas, dejando el resto de las operaciones del receptor (principalmente, los módulos de tracking, decodificación del mensaje de navegación, los observables de código y fase, y la solución básica de Posición, Velocidad y Tiempo (PVT)) a un receptor basado en el concepto de Radio Definida por Software (SDR), el cual se ejecuta en un ordenador personal. El receptor procesa en tiempo real las muestras de la señal filltradas espacialmente, transmitidas usando el bus de datos Gigabit Ethernet. En la última parte de esta Tesis, cerramos ciclo diseñando e implementando completamente este receptor basado en software. El receptor propuesto está dirigido a las arquitecturas de multi-constalación GNSS y multi-frecuencia, persiguiendo los objetivos de eficiencia, modularidad, interoperabilidad y flexibilidad demandada por los usuarios que requieren características no estándar, tales como la extracción de señales intermedias o de datos y intercambio de algoritmos. En este contexto, se presenta un receptor de código abierto que puede trabajar en tiempo real, llamado GNSS-SDR, que contribuye con varias características nuevas. Entre ellas destacan el uso de patrones de diseño de software y técnicas de memoria compartida para administrar de manera eficiente el uso de datos entre los bloques del receptor, el uso de la aceleración por hardware para las operaciones vectoriales más costosas, como la eliminación de la frecuencia Doppler y la correlación de código, y la disponibilidad para compilar y ejecutar el receptor en múltiples plataformas de software y arquitecturas de hardware. A fecha de la escritura de esta Tesis (abril de 2012), el receptor obtiene un rendimiento basado en la medida de la raíz cuadrada del error cuadrático medio en la distancia bidimensional (en inglés, 2-dimensional Distance Root Mean Square (DRMS) error) menor de 2 metros para un escenario GPS L1 C/A con 8 satélites visibles y una dilución de la precisión horizontal (en inglés, Horizontal Dilution Of Precision (HDOP)) de 1.2

    Collective unambiguous positioning with high-order BOC signals

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The unambiguous estimation of high-order BOC signals in harsh propagation conditions is still an open problem in the literature. This paper proposes to overcome the limitations observed in state-of-the-art unambiguous estimation techniques based on the application of existing direct positioning techniques and the exploitation of the spatial diversity introduced by arrays of antennas. In particular, the ambiguity problem is solved as a multiple-input multiple-output (MIMO) estimation problem in the position domain.Peer ReviewedPostprint (author's final draft

    GNSS transpolar earth reflectometry exploriNg system (G-TERN): mission concept

    Get PDF
    The global navigation satellite system (GNSS) Transpolar Earth Reflectometry exploriNg system (G-TERN) was proposed in response to ESA's Earth Explorer 9 revised call by a team of 33 multi-disciplinary scientists. The primary objective of the mission is to quantify at high spatio-temporal resolution crucial characteristics, processes and interactions between sea ice, and other Earth system components in order to advance the understanding and prediction of climate change and its impacts on the environment and society. The objective is articulated through three key questions. 1) In a rapidly changing Arctic regime and under the resilient Antarctic sea ice trend, how will highly dynamic forcings and couplings between the various components of the ocean, atmosphere, and cryosphere modify or influence the processes governing the characteristics of the sea ice cover (ice production, growth, deformation, and melt)? 2) What are the impacts of extreme events and feedback mechanisms on sea ice evolution? 3) What are the effects of the cryosphere behaviors, either rapidly changing or resiliently stable, on the global oceanic and atmospheric circulation and mid-latitude extreme events? To contribute answering these questions, G-TERN will measure key parameters of the sea ice, the oceans, and the atmosphere with frequent and dense coverage over polar areas, becoming a “dynamic mapper”of the ice conditions, the ice production, and the loss in multiple time and space scales, and surrounding environment. Over polar areas, the G-TERN will measure sea ice surface elevation (<;10 cm precision), roughness, and polarimetry aspects at 30-km resolution and 3-days full coverage. G-TERN will implement the interferometric GNSS reflectometry concept, from a single satellite in near-polar orbit with capability for 12 simultaneous observations. Unlike currently orbiting GNSS reflectometry missions, the G-TERN uses the full GNSS available bandwidth to improve its ranging measurements. The lifetime would be 2025-2030 or optimally 2025-2035, covering key stages of the transition toward a nearly ice-free Arctic Ocean in summer. This paper describes the mission objectives, it reviews its measurement techniques, summarizes the suggested implementation, and finally, it estimates the expected performance.Peer ReviewedPostprint (published version

    Surface deformation analysis in Northeast Italy by using PS-InSAR and GNSS data

    Get PDF
    In the present study, we exploited the potential of satellite-based geodetic data for detecting and measuring surface displacement in Northeast Italy. In this contest, we focused mainly on 1) the estimation of the interseismic deformation during the satellites’ observation period, 2) the detection and analysis of the main deformation patterns, and 3) the correlation of the signals to the active tectonic structures. Despite the low convergence rates (~ 1.5-3 mm/yr), Northeast Italy is an active tectonic area, as testified by the instrumental and historical seismicity. The Adria-Eurasia convergence is mainly accommodated by the thrusts and strike-slip faults of the Southeastern Alps and the External Dinarides, located in the northern and northeastern sectors of the study area. The Venetian-Friulian plain and the Adriatic coasts, affected by active subsidence, dominate the southern region. We used the Stanford Method for Persistent Scatterers (StaMPS) applied to Sentinel-1 SAR images acquired along the ascending and descending orbit tracks between 2015 and 2019. Based on a stack of single-master differential interferograms, we detected coherent and temporally stable pixels based on amplitude and phase noise analysis. After applying spatial-temporal filters and additional post-processing operations to refine the measurements, we used Adria-fixed GNSS velocities derived by permanent stations in the study area to calibrate the InSAR velocities. The outcome consists of Line-OF-Sight (LOS) mean ground velocity maps derived by displacement time series along the radar directions for each satellite track. The combination of the LOS datasets yields vertical and east-west velocity maps, which are mostly in agreement with GNSS data and previous geodetic studies. Based on our measurements, we observe a significant positive velocity gradient of 1 mm/yr across the westernmost sector of the Alpine system, suggesting an aseismic motion of the root of the Bassano-Valdobbiadene thrust. The positive vertical gradients (~1 and up to 2 mm/yr) across the Alpine-Dinaric systems in the central and eastern sectors and the eastward motion that increases northeastward (1-2 mm/yr) may be related to the active Alpine-Dinaric thrusts and strike-slip faults. We also suggest that the detected westward motion of the Friulian plain (around Udine) might be attributed to the presence of tectonic structures characterized by transcurrent-transpressive kinematics. Finally, we detect other signals, such as the significant subsidence (2-4 mm/yr) along the coasts and on the southern Venetian-Friulian plain, confirming the correlation between subsidence and the geological setting of the study area. In conclusion, our study confirms the potential of MT-InSAR and GNSS data for the estimation of the surface deformations in response to active tectonics, even in areas characterized by low deformation rates, such as Northeast Italy.In the present study, we exploited the potential of satellite-based geodetic data for detecting and measuring surface displacement in Northeast Italy. In this contest, we focused mainly on 1) the estimation of the interseismic deformation during the satellites’ observation period, 2) the detection and analysis of the main deformation patterns, and 3) the correlation of the signals to the active tectonic structures. Despite the low convergence rates (~ 1.5-3 mm/yr), Northeast Italy is an active tectonic area, as testified by the instrumental and historical seismicity. The Adria-Eurasia convergence is mainly accommodated by the thrusts and strike-slip faults of the Southeastern Alps and the External Dinarides, located in the northern and northeastern sectors of the study area. The Venetian-Friulian plain and the Adriatic coasts, affected by active subsidence, dominate the southern region. We used the Stanford Method for Persistent Scatterers (StaMPS) applied to Sentinel-1 SAR images acquired along the ascending and descending orbit tracks between 2015 and 2019. Based on a stack of single-master differential interferograms, we detected coherent and temporally stable pixels based on amplitude and phase noise analysis. After applying spatial-temporal filters and additional post-processing operations to refine the measurements, we used Adria-fixed GNSS velocities derived by permanent stations in the study area to calibrate the InSAR velocities. The outcome consists of Line-OF-Sight (LOS) mean ground velocity maps derived by displacement time series along the radar directions for each satellite track. The combination of the LOS datasets yields vertical and east-west velocity maps, which are mostly in agreement with GNSS data and previous geodetic studies. Based on our measurements, we observe a significant positive velocity gradient of 1 mm/yr across the westernmost sector of the Alpine system, suggesting an aseismic motion of the root of the Bassano-Valdobbiadene thrust. The positive vertical gradients (~1 and up to 2 mm/yr) across the Alpine-Dinaric systems in the central and eastern sectors and the eastward motion that increases northeastward (1-2 mm/yr) may be related to the active Alpine-Dinaric thrusts and strike-slip faults. We also suggest that the detected westward motion of the Friulian plain (around Udine) might be attributed to the presence of tectonic structures characterized by transcurrent-transpressive kinematics. Finally, we detect other signals, such as the significant subsidence (2-4 mm/yr) along the coasts and on the southern Venetian-Friulian plain, confirming the correlation between subsidence and the geological setting of the study area. In conclusion, our study confirms the potential of MT-InSAR and GNSS data for the estimation of the surface deformations in response to active tectonics, even in areas characterized by low deformation rates, such as Northeast Italy

    Road Surface Feature Extraction and Reconstruction of Laser Point Clouds for Urban Environment

    Get PDF
    Automakers are developing end-to-end three-dimensional (3D) mapping system for Advanced Driver Assistance Systems (ADAS) and autonomous vehicles (AVs). Using geomatics, artificial intelligence, and SLAM (Simultaneous Localization and Mapping) systems to handle all stages of map creation, sensor calibration and alignment. It is crucial to have a system highly accurate and efficient as it is an essential part of vehicle controls. Such mapping requires significant resources to acquire geographic information (GIS and GPS), optical laser and radar spectroscopy, Lidar, and 3D modeling applications in order to extract roadway features (e.g., lane markings, traffic signs, road-edges) detailed enough to construct a “base map”. To keep this map current, it is necessary to update changes due to occurring events such as construction changes, traffic patterns, or growth of vegetation. The information of the road play a very important factor in road traffic safety and it is essential for for guiding autonomous vehicles (AVs), and prediction of upcoming road situations within AVs. The data size of the map is extensive due to the level of information provided with different sensor modalities for that reason a data optimization and extraction from three-dimensional (3D) mobile laser scanning (MLS) point clouds is presented in this thesis. The research shows the proposed hybrid filter configuration together with the dynamic developed mechanism provides significant reduction of the point cloud data with reduced computational or size constraints. The results obtained in this work are proven by a real-world system

    HIGH-FREQUENCY MOTION RESIDUALS IN MULTIBEAM ECHOSOUNDER DATA: ANALYSIS AND ESTIMATION

    Get PDF
    Advances in multibeam sonar mapping and data visualization have increasingly brought to light the subtle integration errors remaining in bathymetric datasets. Traditional field calibration procedures, such as the patch test, just account for static orientation bias and sonar-to-position latency. This, however, ignores the generally subtler integration problems that generate time-varying depth errors. Such dynamic depth errors are the result of an unknown offset in one or more of orientation, space, sound speed or time between the sonar and ancillary sensors. Such errors are systematic, and thus should be predictable, based on their relationship between the input data and integrated output. A first attempt at addressing this problem utilized correlations between motion and temporally smoothed, ping-averaged residuals. The known limitations of that approach, however, included only being able to estimate the dominant integration error, imperfectly accounting for irregularly spaced sounding distribution and only working in shallow water. This thesis presents a new and improved means of considering the dynamics of the integration error signatures which can address multiple issues simultaneously, better account for along-track sounding distribution, and is not restricted to shallow water geometry. The motion-driven signatures of six common errors are simultaneously identified. This is achieved through individually considering each sounding’s input-error relationship along extended sections of a single swath corridor. Such an approach provides a means of underway system optimization using nothing more than the bathymetry of typical seafloors acquired during transit. Initial results of the new algorithm are presented using data generated from a simulator, with known inputs and integration errors, to test the efficacy of the method. Results indicate that successful estimation requires conditions of significant vessel motion over periods of a few tens of seconds as well as smooth, gently rolling bathymetry along the equivalent spatial extent covered by the moving survey platform

    LiCSBAS: An Open-Source InSAR Time Series Analysis Package Integrated with the LiCSAR Automated Sentinel-1 InSAR Processor

    Get PDF
    For the past five years, the 2-satellite Sentinel-1 constellation has provided abundant and useful Synthetic Aperture Radar (SAR) data, which have the potential to reveal global ground surface deformation at high spatial and temporal resolutions. However, for most users, fully exploiting the large amount of associated data is challenging, especially over wide areas. To help address this challenge, we have developed LiCSBAS, an open-source SAR interferometry (InSAR) time series analysis package that integrates with the automated Sentinel-1 InSAR processor (LiCSAR). LiCSBAS utilizes freely available LiCSAR products, and users can save processing time and disk space while obtaining the results of InSAR time series analysis. In the LiCSBAS processing scheme, interferograms with many unwrapping errors are automatically identified by loop closure and removed. Reliable time series and velocities are derived with the aid of masking using several noise indices. The easy implementation of atmospheric corrections to reduce noise is achieved with the Generic Atmospheric Correction Online Service for InSAR (GACOS). Using case studies in southern Tohoku and the Echigo Plain, Japan, we demonstrate that LiCSBAS applied to LiCSAR products can detect both large-scale (>100 km) and localized (~km) relative displacements with an accuracy of <1 cm/epoch and ~2 mm/yr. We detect displacements with different temporal characteristics, including linear, periodic, and episodic, in Niigata, Ojiya, and Sanjo City, respectively. LiCSBAS and LiCSAR products facilitate greater exploitation of globally available and abundant SAR datasets and enhance their applications for scientific research and societal benefit

    Design and testing of compact dual-band dual-polarized robust satellite navigation antenna arrays

    Get PDF
    Die steigende Nachfrage nach präzisen Positionierlösungen für hochautomatisiertes Fahren und sicherheitskritische Anwendungen führt zu der Verwendung von Array-basierten Satellitennavigationsempfängern, die aufgrund des verbesserten Diversity-Gewinns und der potentiellen Strahlformungsfähigkeit eine bessere Leistung aufweisen. Die Notwendigkeit, die Robustheit von Navigationsempfängern gegenüber Quellen von Signalstörungen, wie Mehrwegempfang, atmosphärische, sowie Jamming- und Spoofing, zu verbessern, verlangt, den Empfänger weiter auszubauen, um Polarisations- und Frequenz-Diversity auszunutzen. Das hieraus resultierende Design ist durch eine signifikante Zunahme der Hardware- und Softwarekomplexität gekennzeichnet. Diese Komplexität steigt noch mit dem Trend, den Navigationsempfänger zu miniaturisieren, um die Integration in Fahrzeugen oder mobilen Systemen zu erleichtern. Da die gegenseitige Verkopplung zwischen den Antennenelementen eines kompakten Antennen- Arrays steigt, verschlechtert sich deren Strahlungseffizienz und Polarisationsreinheit und damit die Systemrobustheit. In dieser Arbeit wird ein kompaktes, dualbandiges und dualpolarisiertes Antennenarray für einen Navigationsempfänger untersucht, schaltungstechnisch entworfen und aufgebaut, womit Array-, Frequenz-, und Polarisations-Diversity ermöglicht wird. Dies führt zu einer signifikant verbesserten Robustheit gegenüber den angesprochenen Störungen. Diese Arbeit umfasst das Design des dualbandigen und dualpolarisierten Patchantennenelements, das Design des kompakten Antennenarrays, das Studium der Kreuzpolarisationsquellen in Patchantennen, die Analyse des Einflusses der gegenseitigen Kopplung auf die Strahlungseffizienz und Polarisationsreinheit, und die Abschwächung beider Effekte durch eigenmode-basierten Entkopplungs- und Anpassungsnetzwerken. Darüber hinaus beinhaltet die Arbeit die Integration des Antennensystems mit einem HF-Frontend zur Leistungsverstärkung, Filterung und Signalkonvertierung der Satellitensignale. Die Arbeit umfasst auch die Integration mit einem Array-basierten digitalen Empfänger, in dem neben der Datenerfassung, auch die Richtungsschätzung, das Beamforming und die Anti-Jamming-Algorithmen implementiert wurden. Die Machbarkeit sowohl der Array-Diversity als auch der Polarisations-Diversity wurde in Automotive-related Feldmessungen bestätigt, insbesondere für Elevationswinkel unter 40 bzw. 60 Grad, wo der Einfluss des Mehrwegempfangs ausreichend hohe Pegel erreicht. Die Messungen bestätigten die Robustheit des Empfängers gegenüber Stör- Nutzsignalverhältnissen von bis zu 85 dB und übertrafen damit mehrere "State-of-the-Art" Empfänger.The increasing demand for accurate positioning solutions for highly-automated driving and safety-critical applications motivates the use of array-based satellite navigation receivers that feature better performance, due to the enhanced diversity gain and the potential beamforming capability. The need for improving the robustness of navigation receivers against sources of signal distortion such as multipath propagation, atmospheric impact, jamming, and spoofing violations requests to extend the receiver to exploit polarization and frequency diversities. The resulting design is challenged by the significant rise in hardware and software complexity. This complexity increases even more with the trend to miniaturize the navigation receiver, to ease the integration in vehicles or mobile systems, because mutual coupling rises between the radiating elements of the receiver, and deteriorates their radiation efficiencies and polarization purities, and hence degrades the system robustness. In this thesis, a compact dual-band dual-polarized array-based navigation receiver that uses array diversity, frequency diversity, and polarization diversity is studied and designed, to provide robustness against the different types of distortions. The main contributions of the presented work include the design of the dual-band dual-polarized patch antenna element, the design of the compact antenna array, the study of the cross-polarization sources in patch antennas, the analysis of the mutual coupling impact on radiation efficiency and polarization purity of radiating elements, and the mitigation of both impacts using eigenmode-based decoupling and matching networks. Furthermore, the work also involves the integration of the antenna system with an RF-IF front-end, developed in cooperation with IMMS GmbH, for power amplification, filtering, and down-converting. The dissertation covers also the integration with an array-based digital receiver, developed in cooperation with RWTH Aachen University and the German Aerospace Center (DLR), to implement data acquisition, direction-of-arrival estimation, beamforming, and anti-jamming algorithms. The feasibility of both the array diversity and the polarization diversity was confirmed in automotive-related field measurements, particularly for elevations below 40 and 60 degrees, respectively; i.e., at directions far from the main beam direction of the even mode of the array (at zenith), and where the impact of multipath propagation on strength and polarization of the signal reaches sufficient levels to disturb the receiver. Measurements proved the receiver robustness against jamming-to-signal ratios up to 85 dB, outperforming several state-of-the-art receivers described in literature

    Design and development of a technological demonstrator for the study of high dynamics GNSS receivers

    Full text link
    [ES] En el marco de esta tesis se van a estudiar, principalmente, los efectos del movimiento de alta dinámica en receptores de Sistemas Globales de Navegación por Satélite (GNSS). El término alta dinámica es un término utilizado para referirse al movimiento de los vehículos en los que van embarcados receptores GNSS, los cuales se mueven lo suficientemente rápido como para causar un gran desplazamiento en frecuencia de la portadora debido al efecto Doppler. Se identificarán los problemas inherentes a este tipo de entornos y se estudiarán y propondrán soluciones. Para poder efectuar el estudio de estos fenómenos, se diseñará un demostrador tecnológico (conjunto de hardware y software para prueba y prototipado de tecnologías) en el que desarrollar el estudio de los casos de interés. Con el fin de trabajar en un entorno repetible, se utilizará un generador de señal GNSS. La señal generada se traslada a un receptor de radiofrecuencia definido por software, Software Defined Radio (SDR). Este tipo de receptor únicamente se encarga de digitalizar la señal de entrada y de llevar las muestras digitales a un ordenador, de modo que todo el procesado de señal se implementa en dicho ordenador. Este esquema de trabajo es ideal habida cuenta de su simplicidad y flexibilidad. Dicha flexibilidad conlleva la posibilidad de sintonizar el demostrador para poder estudiar una amplia gama de arquitecturas de receptor GNSS. Una vez se haya ensamblado el demostrador, se comprobará su correcto funcionamiento en escenarios conocidos usando los algoritmos más utilizados a día de hoy en receptores GNSS. Asegurado el correcto funcionamiento, se comparará el rendimiento de algoritmos de referencia con los algoritmos a estudiar y se extraerán conclusiones.[CA] En aquest treball s'estudiaran, principalment, els efectes del moviment d'alta dinámica en receptors de Navegació per Satèl.lit GNSS (Global Navigation Satellite System). La denominació alta dinámica, s'utilitza per a descriure el moviment dels vehicles dins dels quals hi han receptors GNSS. El moviment d'aquests vehicles és suficientment ràpid com per a causar un gran desplaçament en freqüència de la freqüència portadora. Aquest desplaçament és consqüència de l'efecte Doppler. S'identificaran els problemes inherents d'aquest tipus de entorns GNSS i es propsararàn solucions. Per a estudiar l'efecte de l'alta dinàmica, es dissenyarà un demostrador tecnològic (conjunt de maquinari i software per a proves i prototipat de tecnologies) en que es pot desenvolupar l'estudi dels casos d'interès. Amb l'objectiu d'aconseguir treballar en un entorn repetible s'utilitzarà un generador de senyal GNSS. El senyal es processarà mitjançant un receptor SDR (Software Defined Radio). Aquest tipus de receptor s'encarrega del processat que fa un receptor GNSS en un PC. Aquesta filosofia de treball és idónia per la seua flexibilitat i simplicitat. Quan s'haja ensamblat el demostrador, és comprovarà el seu correct funcionament en escenaris de prova utilitzant els algoritmes implementats en receptors GNSS comercials. En aquest moment, el demostrador estarà preparat per a estudiar el casos d'alta dinàmica, que és l'objectiu fonamental d'aquest treball.[EN] The study of the effects of the high dynamics on Global Navigation Satellite System (GNSS) receivers constitute the main matter of study in this work. The term high dynamics refers to the movement of vehicles that carry GNSS embedded receivers, which move fast enough to generate a large carrier frequency drift caused by the Doppler effect. The problems linked to these environments will be characterized and solutions to counteract possible signal impairments will be discussed. In order to correctly characterize these problems, a technological demonstrator (set of hardware components interacting with software tools enabling fast prototyping) will be designed and constructed. Using this technological demonstrator, different case studies will be developed. With the aim of achieving experimental repeatability, a GNSS signal generator will be used. The generated GNSS signal is fed to a Software Defined Radio (SDR) GNSS receiver. This receiver type is in charge of digitizing the analog RF signal and carrying the resulting samples to a computer in which signal processing tasks implementing the functions of GNSS receivers, take place. The main advantage linked to the usage of this work scheme is that by changing the software part, different receiver architectures can be implemented in a simple manner. Furthermore, by taking advantage of the flexible architecture it is possible to tune the detector in such a manner that it is possible to implement many different architecture types. Once the technological demonstrator is assembled, tests to assure its correct operation will be conducted by performing comparisons with the behaviour of well-known GNSS receivers in known scenarios. Later on, comparative tests using signals from high dynamics scenarios will take place. Insight and analysis of comparative performance will be given.Alcaide Guillén, C. (2019). Design and development of a technological demonstrator for the study of high dynamics GNSS receivers [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/131697TESI
    corecore