1,195 research outputs found

    A performance evaluation of the IBM 370/XT personal computer

    Get PDF
    An evaluation of the IBM 370/XT personal computer is given. This evaluation focuses primarily on the use of the 370/XT for scientific and technical applications and applications development. A measurement of the capabilities of the 370/XT was performed by means of test programs which are presented. Also included is a review of facilities provided by the operating system (VM/PC), along with comments on the IBM 370/XT hardware configuration

    Bachelors in Computer Science Course Descriptions

    Get PDF

    Bachelor of Science Degree Requirements

    Get PDF

    Bachelor of Science Degree in Computer Science

    Get PDF

    COBOL as a Modern Language

    Get PDF
    The use of COBOL cripples the mind; its teaching should, therefore, be regarded as a criminal offence. - Edsger Dijkstra (1) This statement may be hyperbole, but Dijkstra\u27s view on the language reflects underlying feelings about COBOL throughout the programming world. The language was created in 1959 to allow for interactivity between computation machines.(2) More than half a century later, COBOL is still used extensively in mainframes, computers designed for large-scale calculation and record processing. Numerous factors have contributed to the longevity of COBOL, including ease of use compared to its contemporaries and an upgrade to object orientation in the 1990s.(3) This longevity has also contributed to problems with COBOL. The chief criticism is that it has become difficult to learn as other programming languages become more user-friendly.(4) COBOL software tends to be verbose, even for simple tasks. It\u27s said that the average size of a COBOL program is 600 lines of code, whereas a Java program performing the same operation should be 30 lines or fewer.(5) Difficulties with the language will only increase as the workforce knowledgeable in COBOL\u27s use retire

    1957-2007: 50 Years of Higher Order Programming Languages

    Get PDF
    Fifty years ago one of the greatest breakthroughs in computer programming and in the history of computers happened – the appearance of FORTRAN, the first higher-order programming language. From that time until now hundreds of programming languages were invented, different programming paradigms were defined, all with the main goal to make computer programming easier and closer to as many people as possible. Many battles were fought among scientists as well as among developers around concepts of programming, programming languages and paradigms. It can be said that programming paradigms and programming languages were very often a trigger for many changes and improvements in computer science as well as in computer industry. Definitely, computer programming is one of the cornerstones of computer science. Today there are many tools that give a help in the process of programming, but there is still a programming tasks that can be solved only manually. Therefore, programming is still one of the most creative parts of interaction with computers. Programmers should chose programming language in accordance to task they have to solve, but very often, they chose it in accordance to their personal preferences, their beliefs and many other subjective reasons. Nevertheless, the market of programming languages can be merciless to languages as history was merciless to some people, even whole nations. Programming languages and developers get born, live and die leaving more or less tracks and successors, and not always the best survives. The history of programming languages is closely connected to the history of computers and computer science itself. Every single thing from one of them has its reflexions onto the other. This paper gives a short overview of last fifty years of computer programming and computer programming languages, but also gives many ideas that influenced other aspects of computer science. Particularly, programming paradigms are described, their intentions and goals, as well as the most of the significant languages of all paradigms

    Parsing Fortran-77 with proprietary extensions

    Full text link
    Far from the latest innovations in software development, many organizations still rely on old code written in "obsolete" programming languages. Because this source code is old and proven it often contributes significantly to the continuing success of these organizations. Yet to keep the applications relevant and running in an evolving environment, they sometimes need to be updated or migrated to new languages or new platforms. One difficulty of working with these "veteran languages" is being able to parse the source code to build a representation of it. Parsing can also allow modern software development tools and IDEs to offer better support to these veteran languages. We initiated a project between our group and the Framatome company to help migrate old Fortran-77 with proprietary extensions (called Esope) into more modern Fortran. In this paper, we explain how we parsed the Esope language with a combination of island grammar and regular parser to build an abstract syntax tree of the code.Comment: Accepted at ICSME'23 Industrial trac

    Programming language trends : an empirical study

    Get PDF
    Predicting the evolution of software engineering technology trends is a dubious proposition. The recent evolution of software technology is a prime example; it is fast paced and affected by many factors, which are themselves driven by a wide range of sources. This dissertation is part of a long term project intended to analyze software engineering technology trends and how they evolve. Basically, the following questions will be answered: How to watch, predict, adapt to, and affect software engineering trends? In this dissertation, one field of software engineering, programming languages, will be discussed. After reviewing the history of a group of programming languages, it shows that two kinds of factors, intrinsic factors and extrinsic factors, could affect the evolution of a programming language. Intrinsic factors are the factors that can be used to describe the general desigu criteria of programming languages. Extrinsic factors are the factors that are not directly related to the general attributes of programming languages, but still can affect their evolution. In order to describe the relationship of these factors and how they affect programming language trends, these factors need to be quantified. A score has been assigued to each factor for every programming language. By collecting historical data, a data warehouse has been established, which stores the value of each factor for every programming language. The programming language trends are described and evaluated by using these data. Empirical research attempts to capture observed behaviors by empirical laws. In this dissertation, statistical methods are used to describe historical programming language trends and predict the evolution of the future trends. Several statistics models are constructed to describe the relationships among these factors. Canonical correlation is used to do the factor analysis. Multivariate multiple regression method has been used to construct the statistics models for programming language trends. After statistics models are constructed to describe the historical programming language trends, they are extended to do tentative prediction for future trends. The models are validated by comparing the predictive data and the actual data

    A STUDY ON VARIOUS PROGRAMMING LANGUAGES TO KEEP PACE WITH INNOVATION

    Get PDF
    A programming language is a formal computer language designed to communicate instructions to a machine, particularly a computer. Programming languages can be used to create programs to control the behaviour of a machine or to express algorithms. The earliest known programmable machine preceded the invention of the digital computer and is the automatic flute player described in the 9th century by the brothers Musa in Baghdad, "during the Islamic Golden Age". From the early 1800s, "programs" were used to direct the behavior of machines such as Jacquard looms and player pianos. Thousands of different programming languages have been created, mainly in the computer field, and many more still are being created every year. Many programming languages require computation to be specified in an imperative form (i.e., as a sequence of operations to perform) while other languages use other forms of program specification such as the declarative form (i.e. the desired result is specified, not how to achieve it). The description of a programming language is usually split into the two components of syntax (form) and semantics (meaning). Some languages are defined by a specification document (for example, the C programming language is specified by an ISO Standard) while other languages (such as Perl) have a dominant implementation that is treated as a reference. Some languages have both, with the basic language defined by a standard and extensions taken from the dominant implementation being common. An attempt is made in this paper to have a study on various programming languages
    corecore