564 research outputs found

    Exact and Efficient Simulation of Concordant Computation

    Get PDF
    Concordant computation is a circuit-based model of quantum computation for mixed states, that assumes that all correlations within the register are discord-free (i.e. the correlations are essentially classical) at every step of the computation. The question of whether concordant computation always admits efficient simulation by a classical computer was first considered by B. Eastin in quant-ph/1006.4402v1, where an answer in the affirmative was given for circuits consisting only of one- and two-qubit gates. Building on this work, we develop the theory of classical simulation of concordant computation. We present a new framework for understanding such computations, argue that a larger class of concordant computations admit efficient simulation, and provide alternative proofs for the main results of quant-ph/1006.4402v1 with an emphasis on the exactness of simulation which is crucial for this model. We include detailed analysis of the arithmetic complexity for solving equations in the simulation, as well as extensions to larger gates and qudits. We explore the limitations of our approach, and discuss the challenges faced in developing efficient classical simulation algorithms for all concordant computations.Comment: 16 page

    Distinguishing multi-partite states by local measurements

    Full text link
    We analyze the distinguishability norm on the states of a multi-partite system, defined by local measurements. Concretely, we show that the norm associated to a tensor product of sufficiently symmetric measurements is essentially equivalent to a multi-partite generalisation of the non-commutative 2-norm (aka Hilbert-Schmidt norm): in comparing the two, the constants of domination depend only on the number of parties but not on the Hilbert spaces dimensions. We discuss implications of this result on the corresponding norms for the class of all measurements implementable by local operations and classical communication (LOCC), and in particular on the leading order optimality of multi-party data hiding schemes.Comment: 18 pages, 6 figures, 1 unreferenced referenc

    Asymptotic entanglement transformation between W and GHZ states

    Full text link
    We investigate entanglement transformations with stochastic local operations and classical communication (SLOCC) in an asymptotic setting using the concepts of degeneration and border rank of tensors from algebraic complexity theory. Results well-known in that field imply that GHZ states can be transformed into W states at rate 1 for any number of parties. As a generalization, we find that the asymptotic conversion rate from GHZ states to Dicke states is bounded as the number of subsystems increase and the number of excitations is fixed. By generalizing constructions of Coppersmith and Winograd and by using monotones introduced by Strassen we also compute the conversion rate from W to GHZ states.Comment: 11 page
    corecore