4,336 research outputs found

    Arithmetic Circuits with Locally Low Algebraic Rank

    Get PDF
    In recent years there has been a flurry of activity proving lower bounds for homogeneous depth-4 arithmetic circuits, which has brought us very close to statements that are known to imply VP != VNP. It is a big question to go beyond homogeneity, and in this paper we make progress towards this by considering depth-4 circuits of low algebraic rank, which are a natural extension of homogeneous depth-4 arithmetic circuits. A depth-4 circuit is a representation of an N-variate, degree n polynomial P as P = sum_{i=1}^T Q_{i1} * Q_{i2} * ... * Q_{it} where the Q_{ij} are given by their monomial expansion. Homogeneity adds the constraint that for every i in [T], sum_{j} degree(Q_{ij}) = n. We study an extension where, for every i in [T], the algebraic rank of the set of polynomials {Q_{i1}, Q_{i2}, ... ,Q_{it}} is at most some parameter k. We call this the class of spnew circuits. Already for k=n, these circuits are a strong generalization of the class of homogeneous depth-4 circuits, where in particular t<=n (and hence k<=n). We study lower bounds and polynomial identity tests for such circuits and prove the following results. 1. Lower bounds: We give an explicit family of polynomials {P_n} of degree n in N = n^{O(1)} variables in VNP, such that any spnewn circuit computing P_n has size at least exp{(Omega(sqrt(n)*log(N)))}. This strengthens and unifies two lines of work: it generalizes the recent exponential lower bounds for homogeneous depth-4 circuits [KLSS14, KS-full] as well as the Jacobian based lower bounds of Agrawal et al. which worked for spnew circuits in the restricted setting where T * k <= n. 2. Hitting sets: Let spnewbounded be the class of spnew circuits with bottom fan-in at most d. We show that if d and k are at most poly(log(N)), then there is an explicit hitting set for spnewbounded circuits of size quasipolynomial in N and the size of the circuit. This strengthens a result of Forbes which showed such quasipolynomial sized hitting sets in the setting where d and t are at most poly(log(N)). A key technical ingredient of the proofs is a result which states that over any field of characteristic zero (or sufficiently large characteristic), upto a translation, every polynomial in a set of algebraically dependent polynomials can be written as a function of the polynomials in the transcendence basis. We believe this may be of independent interest. We combine this with shifted partial derivative based methods to obtain our final results

    Progress on Polynomial Identity Testing - II

    Full text link
    We survey the area of algebraic complexity theory; with the focus being on the problem of polynomial identity testing (PIT). We discuss the key ideas that have gone into the results of the last few years.Comment: 17 pages, 1 figure, surve

    Algebraic Independence over Positive Characteristic: New Criterion and Applications to Locally Low Algebraic Rank Circuits

    Get PDF
    The motivation for this work comes from two problems--test algebraic independence of arithmetic circuits over a field of small characteristic, and generalize the structural property of algebraic dependence used by (Kumar, Saraf CCC\u2716) to arbitrary fields. It is known that in the case of zero, or large characteristic, using a classical criterion based on the Jacobian, we get a randomized poly-time algorithm to test algebraic independence. Over small characteristic, the Jacobian criterion fails and there is no subexponential time algorithm known. This problem could well be conjectured to be in RP, but the current best algorithm puts it in NP^#P (Mittmann, Saxena, Scheiblechner Trans.AMS\u2714). Currently, even the case of two bivariate circuits over F_2 is open. We come up with a natural generalization of Jacobian criterion, that works over all characteristic. The new criterion is efficient if the underlying inseparable degree is promised to be a constant. This is a modest step towards the open question of fast independence testing, over finite fields, posed in (Dvir, Gabizon, Wigderson FOCS\u2707). In a set of linearly dependent polynomials, any polynomial can be written as a linear combination of the polynomials forming a basis. The analogous property for algebraic dependence is false, but a property approximately in that spirit is named as ``functional dependence\u27\u27 in (Kumar, Saraf CCC\u2716) and proved for zero or large characteristic. We show that functional dependence holds for arbitrary fields, thereby answering the open questions in (Kumar, Saraf CCC\u2716). Following them we use the functional dependence lemma to prove the first exponential lower bound for locally low algebraic rank circuits for arbitrary fields (a model that strongly generalizes homogeneous depth-4 circuits). We also recover their quasipoly-time hitting-set for such models, for fields of characteristic smaller than the ones known before. Our results show that approximate functional dependence is indeed a more fundamental concept than the Jacobian as it is field independent. We achieve the former by first picking a ``good\u27\u27 transcendence basis, then translating the circuits by new variables, and finally approximating them by truncating higher degree monomials. We give a tight analysis of the ``degree\u27\u27 of approximation needed in the criterion. To get the locally low algebraic rank circuit applications we follow the known shifted partial derivative based methods

    Polar Varieties and Efficient Real Elimination

    Full text link
    Let S0S_0 be a smooth and compact real variety given by a reduced regular sequence of polynomials f1,...,fpf_1, ..., f_p. This paper is devoted to the algorithmic problem of finding {\em efficiently} a representative point for each connected component of S0S_0 . For this purpose we exhibit explicit polynomial equations that describe the generic polar varieties of S0S_0. This leads to a procedure which solves our algorithmic problem in time that is polynomial in the (extrinsic) description length of the input equations f1,>...,fpf_1, >..., f_p and in a suitably introduced, intrinsic geometric parameter, called the {\em degree} of the real interpretation of the given equation system f1,>...,fpf_1, >..., f_p.Comment: 32 page

    Report on "Geometry and representation theory of tensors for computer science, statistics and other areas."

    Full text link
    This is a technical report on the proceedings of the workshop held July 21 to July 25, 2008 at the American Institute of Mathematics, Palo Alto, California, organized by Joseph Landsberg, Lek-Heng Lim, Jason Morton, and Jerzy Weyman. We include a list of open problems coming from applications in 4 different areas: signal processing, the Mulmuley-Sohoni approach to P vs. NP, matchgates and holographic algorithms, and entanglement and quantum information theory. We emphasize the interactions between geometry and representation theory and these applied areas

    Blackbox identity testing for bounded top fanin depth-3 circuits: the field doesn't matter

    Full text link
    Let C be a depth-3 circuit with n variables, degree d and top fanin k (called sps(k,d,n) circuits) over base field F. It is a major open problem to design a deterministic polynomial time blackbox algorithm that tests if C is identically zero. Klivans & Spielman (STOC 2001) observed that the problem is open even when k is a constant. This case has been subjected to a serious study over the past few years, starting from the work of Dvir & Shpilka (STOC 2005). We give the first polynomial time blackbox algorithm for this problem. Our algorithm runs in time poly(nd^k), regardless of the base field. The only field for which polynomial time algorithms were previously known is F=Q (Kayal & Saraf, FOCS 2009, and Saxena & Seshadhri, FOCS 2010). This is the first blackbox algorithm for depth-3 circuits that does not use the rank based approaches of Karnin & Shpilka (CCC 2008). We prove an important tool for the study of depth-3 identities. We design a blackbox polynomial time transformation that reduces the number of variables in a sps(k,d,n) circuit to k variables, but preserves the identity structure.Comment: 14 pages, 1 figure, preliminary versio

    Discovering the roots: Uniform closure results for algebraic classes under factoring

    Full text link
    Newton iteration (NI) is an almost 350 years old recursive formula that approximates a simple root of a polynomial quite rapidly. We generalize it to a matrix recurrence (allRootsNI) that approximates all the roots simultaneously. In this form, the process yields a better circuit complexity in the case when the number of roots rr is small but the multiplicities are exponentially large. Our method sets up a linear system in rr unknowns and iteratively builds the roots as formal power series. For an algebraic circuit f(x1,,xn)f(x_1,\ldots,x_n) of size ss we prove that each factor has size at most a polynomial in: ss and the degree of the squarefree part of ff. Consequently, if f1f_1 is a 2Ω(n)2^{\Omega(n)}-hard polynomial then any nonzero multiple ifiei\prod_{i} f_i^{e_i} is equally hard for arbitrary positive eie_i's, assuming that ideg(fi)\sum_i \text{deg}(f_i) is at most 2O(n)2^{O(n)}. It is an old open question whether the class of poly(nn)-sized formulas (resp. algebraic branching programs) is closed under factoring. We show that given a polynomial ff of degree nO(1)n^{O(1)} and formula (resp. ABP) size nO(logn)n^{O(\log n)} we can find a similar size formula (resp. ABP) factor in randomized poly(nlognn^{\log n})-time. Consequently, if determinant requires nΩ(logn)n^{\Omega(\log n)} size formula, then the same can be said about any of its nonzero multiples. As part of our proofs, we identify a new property of multivariate polynomial factorization. We show that under a random linear transformation τ\tau, f(τx)f(\tau\overline{x}) completely factors via power series roots. Moreover, the factorization adapts well to circuit complexity analysis. This with allRootsNI are the techniques that help us make progress towards the old open problems, supplementing the large body of classical results and concepts in algebraic circuit factorization (eg. Zassenhaus, J.NT 1969, Kaltofen, STOC 1985-7 \& Burgisser, FOCS 2001).Comment: 33 Pages, No figure

    Algebraic and Combinatorial Methods in Computational Complexity

    Get PDF
    Computational Complexity is concerned with the resources that are required for algorithms to detect properties of combinatorial objects and structures. It has often proven true that the best way to argue about these combinatorial objects is by establishing a connection (perhaps approximate) to a more well-behaved algebraic setting. Indeed, many of the deepest and most powerful results in Computational Complexity rely on algebraic proof techniques. The Razborov-Smolensky polynomial-approximation method for proving constant-depth circuit lower bounds, the PCP characterization of NP, and the Agrawal-Kayal-Saxena polynomial-time primality test are some of the most prominent examples. The algebraic theme continues in some of the most exciting recent progress in computational complexity. There have been significant recent advances in algebraic circuit lower bounds, and the so-called chasm at depth 4 suggests that the restricted models now being considered are not so far from ones that would lead to a general result. There have been similar successes concerning the related problems of polynomial identity testing and circuit reconstruction in the algebraic model (and these are tied to central questions regarding the power of randomness in computation). Another surprising connection is that the algebraic techniques invented to show lower bounds now prove useful to develop efficient algorithms. For example, Williams showed how to use the polynomial method to obtain faster all-pair-shortest-path algorithms. This emphases once again the central role of algebra in computer science. The seminar aims to capitalize on recent progress and bring together researchers who are using a diverse array of algebraic methods in a variety of settings. Researchers in these areas are relying on ever more sophisticated and specialized mathematics and this seminar can play an important role in educating a diverse community about the latest new techniques, spurring further progress
    corecore