17 research outputs found

    A QOBDD-based Approach to Simple Games

    Get PDF
    Simple games are a commonly used model for the analysis of voting systems in which each participant can vote “yes” or “no” and where the outcome is “yes” or “no” as well. Quasi-reduced and ordered binary decision diagrams, or QOBDDs for short, are well-known as compact representations for subsets of powersets and Boolean functions. In this thesis, we use QOBDDs to represent simple games and to develop practically applicable algorithms to solve problems for simple games. We study properties of QOBDDs when they are used to represent simple games as well as the runtime behavior of our algorithms

    An overview of decision table literature 1982-1995.

    Get PDF
    This report gives an overview of the literature on decision tables over the past 15 years. As much as possible, for each reference, an author supplied abstract, a number of keywords and a classification are provided. In some cases own comments are added. The purpose of these comments is to show where, how and why decision tables are used. The literature is classified according to application area, theoretical versus practical character, year of publication, country or origin (not necessarily country of publication) and the language of the document. After a description of the scope of the interview, classification results and the classification by topic are presented. The main body of the paper is the ordered list of publications with abstract, classification and comments.

    Precise quantitative analysis of binarized neural networks: a BDD-based approach

    Get PDF
    As a new programming paradigm, neural-network-based machine learning has expanded its application to many real-world problems. Due to the black-box nature of neural networks, verifying and explaining their behavior are becoming increasingly important, especially when they are deployed in safety-critical applications. Existing verification work mostly focuses on qualitative verification, which asks whether there exists an input (in a specified region) for a neural network such that a property (e.g., local robustness) is violated. However, in many practical applications, such an (adversarial) input almost surely exists, which makes a qualitative answer less meaningful. In this work, we study a more interesting yet more challenging problem, i.e., quantitative verification of neural networks, which asks how often a property is satisfied or violated. We target binarized neural networks (BNNs), the 1-bit quantization of general neural networks. BNNs have attracted increasing attention in deep learning recently, as they can drastically reduce memory storage and execution time with bit-wise operations, which is crucial in recourse-constrained scenarios, e.g., embedded devices for Internet of Things. Toward quantitative verification of BNNs, we propose a novel algorithmic approach for encoding BNNs as Binary Decision Diagrams (BDDs), a widely studied model in formal verification and knowledge representation. By exploiting the internal structure of the BNNs, our encoding translates the input-output relation of blocks in BNNs to cardinality constraints, which are then encoded by BDDs. Based on the new BDD encoding, we develop a quantitative verification framework for BNNs where precise and comprehensive analysis of BNNs can be performed. To improve the scalability of BDD encoding, we also investigate parallelization strategies at various levels. We demonstrate applications of our framework by providing quantitative robustness verification and interpretability for BNNs. An extensive experimental evaluation confirms the effectiveness and efficiency of our approach

    Data structures for symbolic multi-valued model-checking

    Full text link

    Towards an infrastructure for preparation and control of intelligent automation systems

    Get PDF
    In an attempt to handle some of the challenges of modern production, intelligent automation systems offer solutions that are flexible, adaptive, and collaborative. Contrary to traditional solutions, intelligent automation systems emerged just recently and thus lack the supporting tools and infrastructure that traditional systems nowadays take for granted. To support efficient development, commissioning, and control of such systems, this thesis summarizes various lessons learned during years of implementation. Based on what was learned, this thesis investigates key features of infrastructure for modern and flexible intelligent automation systems, as well as a number of important design solutions. For example, an important question is raised whether to decentralize the global state or to give complete access to the main controller.Moreover, in order to develop such systems, a framework for virtual preparation and commissioning is presented, with the main goal to offer support for engineers. As traditional virtual commissioning solutions are not intended for preparing highly flexible, collaborative, and dynamic systems, this framework aims to provide some of the groundwork and point to a direction for fast and integrated preparation and virtual commissioning of such systems.Finally, this thesis summarizes some of the investigations made on planning as satisfiability, in order to evaluate how different methods improve planning performance. Throughout the thesis, an industrial material kitting use case exemplifies presented perspectives, lessons learned, and frameworks

    Formal Requirements Analysis and Specification-Based Testing in Cyber-Physical Systems

    Get PDF
    openFormal requirements analysis plays an important role in the design of safety- and security-critical complex systems such as, e.g., Cyber-Physical Systems (CPS). It can help in detecting problems early in the system development life-cycle, reducing time and cost to completion. Moreover, its results can be employed at the end of the process to validate the implemented system, guiding the testing phase. Despite its importance, requirements analysis is still largely carried out manually due to the intrinsic difficulty of dealing with natural language requirements, the most common way to represent them. However, manual reviews are time-consuming and error-prone, reducing the potential benefit of the requirement engineering process. Automation can be achieved with the employment of formal methods, but their application is still limited by their complexity and lack of specialized tools. In this work we focus on the analysis of requirements for the design of CPSs, and on how to automatize some activities related to such analysis. We first study how to formalize requirements expressed in a structured English language, encode them in linear temporal logic, check their consistency with off-the-shelf model checkers, and find minimal set of conflicting requirements in case of inconsistency. We then present a new methodology to automatically generate tests from requirements and execute them on a given system, without requiring knowledge of its internal structure. Finally, we provide a set of tools that implement the studied algorithms and provide easy-to-use interfaces to help their adoption from the users.openXXXIII CICLO - INFORMATICA E INGEGNERIA DEI SISTEMI/ COMPUTER SCIENCE AND SYSTEMS ENGINEERING - Informatica/computer sciencePULINA, LUCAVuotto, Simon

    Model Checking Concurrent Systems with Unbounded Integer Variables: Symbolic Representations, Approximations and Experimental Results

    Get PDF
    Model checking is a powerful technique for analyzing large, finite-state systems. In an infinite-state system, however, many basic properties are undecidable. In this paper, we present a new symbolic model checker which conservatively evaluates safety and liveness properties on infinite-state programs. We use Presburger formulas to symbolically encode a program's transition system, as well as its model-checking computations. All fixpoint calculations are executed symbolically, and their convergence is guaranteed by using approximation techniques. We demonstrate the promise of this technology on some well-known infinite-state concurrency problems. (Also cross-referenced as UMIACS-TR-98-07

    The 1991 3rd NASA Symposium on VLSI Design

    Get PDF
    Papers from the symposium are presented from the following sessions: (1) featured presentations 1; (2) very large scale integration (VLSI) circuit design; (3) VLSI architecture 1; (4) featured presentations 2; (5) neural networks; (6) VLSI architectures 2; (7) featured presentations 3; (8) verification 1; (9) analog design; (10) verification 2; (11) design innovations 1; (12) asynchronous design; and (13) design innovations 2

    Formal modelling and analysis of broadcasting embedded control systems

    Get PDF
    PhD ThesisEmbedded systems are real-time, communicating systems, and the effective modelling and analysis of these aspects of their behaviour is regarded as essential for acquiring confidence in their correct operation. In practice, it is important to minimise the burden of model construction and to automate the analysis, if possible. Among the most promising techniques for real-time systems are reachability analysis and model-checking of networks of timed automata. We identify two obstacles to the application of these techniques to a large class of distributed embedded systems: firstly, the language of timed automata is too low-level for straightforward model construction, and secondly, the synchronous, handshake communication mechanism of the timed automata model does not fit well with the asynchronous, broadcast mechanism employed in many distributed embedded systems. As a result, the task of model construction can be unduly onerous. This dissertation proposes an expressive language for the construction of models of real-time, broadcasting control systems, and demonstrates how effi- cient analysis techniques can be applied to them. The dissertation is concerned in particular with the Controller Area Network (CAN) protocol which is emerging as a de facto standard in the automotive industry. An abstract formal model of CAN is developed. This model is adopted as the communication primitive in a new language, bCANDLE, which includes value passing, broadcast communication, message priorities and explicit time. A high-level language, CANDLE, is introduced and its semantics defined by translation to bCANDLE. We show how realistic CAN systems can be described in CANDLE and how a timed transition model of a system can be extracted for analysis. Finally, it is shown how efficient methods of analysis, such as 'on-the- fly' and symbolic techniques, can be applied to these models. The dissertation contributes to the practical application of formal methods within the domain of broadcasting, embedded control systemsSchool of Computing and Mathematics at the University of Northumbri

    Proceedings of VVSS2007 - verification and validation of software systems, 23rd March 2007, Eindhoven, The Netherlands

    Get PDF
    corecore