2,495 research outputs found

    Computing hypergeometric functions rigorously

    Get PDF
    We present an efficient implementation of hypergeometric functions in arbitrary-precision interval arithmetic. The functions 0F1{}_0F_1, 1F1{}_1F_1, 2F1{}_2F_1 and 2F0{}_2F_0 (or the Kummer UU-function) are supported for unrestricted complex parameters and argument, and by extension, we cover exponential and trigonometric integrals, error functions, Fresnel integrals, incomplete gamma and beta functions, Bessel functions, Airy functions, Legendre functions, Jacobi polynomials, complete elliptic integrals, and other special functions. The output can be used directly for interval computations or to generate provably correct floating-point approximations in any format. Performance is competitive with earlier arbitrary-precision software, and sometimes orders of magnitude faster. We also partially cover the generalized hypergeometric function pFq{}_pF_q and computation of high-order parameter derivatives.Comment: v2: corrected example in section 3.1; corrected timing data for case E-G in section 8.5 (table 6, figure 2); adjusted paper siz

    Interval Slopes as Numerical Abstract Domain for Floating-Point Variables

    Full text link
    The design of embedded control systems is mainly done with model-based tools such as Matlab/Simulink. Numerical simulation is the central technique of development and verification of such tools. Floating-point arithmetic, that is well-known to only provide approximated results, is omnipresent in this activity. In order to validate the behaviors of numerical simulations using abstract interpretation-based static analysis, we present, theoretically and with experiments, a new partially relational abstract domain dedicated to floating-point variables. It comes from interval expansion of non-linear functions using slopes and it is able to mimic all the behaviors of the floating-point arithmetic. Hence it is adapted to prove the absence of run-time errors or to analyze the numerical precision of embedded control systems

    Adaptive Precision Floating-Point Arithmetic and Fast Robust Geometric Predicates

    Get PDF
    Exact computer arithmetic has a variety of uses including, but not limited to, the robust implementation of geometric algorithms. This report has three purposes. The first is to offer fast software-level algorithms for exact addition and multiplication of arbitrary precision floating-point values. The second is to propose a technique for adaptive-precision arithmetic that can often speed these algorithms when one wishes to perform multiprecision calculations that do not always require exact arithmetic, but must satisfy some error bound. The third is to provide a practical demonstration of these techniques, in the form of implementations of several common geometric calculations whose required degree of accuracy depends on their inputs. These robust geometric predicates are adaptive; their running time depends on the degree of uncertainty of the result, and is usually small. These algorithms work on computers whose floating-point arithmetic uses radix two and exact rounding, including machines complying with the IEEE 754 standard. The inputs to the predicates may be arbitrary single or double precision floating-point numbers. C code is publicly available for the 2D and 3D orientation and incircle tests, an

    Fast algorithms for spherical harmonic expansions, III

    Full text link
    We accelerate the computation of spherical harmonic transforms, using what is known as the butterfly scheme. This provides a convenient alternative to the approach taken in the second paper from this series on "Fast algorithms for spherical harmonic expansions." The requisite precomputations become manageable when organized as a "depth-first traversal" of the program's control-flow graph, rather than as the perhaps more natural "breadth-first traversal" that processes one-by-one each level of the multilevel procedure. We illustrate the results via several numerical examples.Comment: 14 pages, 1 figure, 6 table

    Certified Roundoff Error Bounds Using Semidefinite Programming.

    Get PDF
    Roundoff errors cannot be avoided when implementing numerical programs with finite precision. The ability to reason about rounding is especially important if one wants to explore a range of potential representations, for instance for FPGAs or custom hardware implementation. This problem becomes challenging when the program does not employ solely linear operations as non-linearities are inherent to many interesting computational problems in real-world applications. Existing solutions to reasoning are limited in the presence of nonlinear correlations between variables, leading to either imprecise bounds or high analysis time. Furthermore, while it is easy to implement a straightforward method such as interval arithmetic, sophisticated techniques are less straightforward to implement in a formal setting. Thus there is a need for methods which output certificates that can be formally validated inside a proof assistant. We present a framework to provide upper bounds on absolute roundoff errors. This framework is based on optimization techniques employing semidefinite programming and sums of squares certificates, which can be formally checked inside the Coq theorem prover. Our tool covers a wide range of nonlinear programs, including polynomials and transcendental operations as well as conditional statements. We illustrate the efficiency and precision of this tool on non-trivial programs coming from biology, optimization and space control. Our tool produces more precise error bounds for 37 percent of all programs and yields better performance in 73 percent of all programs

    Transverse Mercator with an accuracy of a few nanometers

    Full text link
    Implementations of two algorithms for the transverse Mercator projection are described; these achieve accuracies close to machine precision. One is based on the exact equations of Thompson and Lee and the other uses an extension of Krueger's series for the projection to higher order. The exact method provides an accuracy of 9 nm over the entire ellipsoid, while the errors in the series method are less than 5 nm within 3900 km of the central meridian. In each case, the meridian convergence and scale are also computed with similar accuracy. The speed of the series method is competitive with other less accurate algorithms and the exact method is about 5 times slower.Comment: LaTeX, 10 pages, 3 figures. Includes some revisions. Supplementary material is available at http://geographiclib.sourceforge.net/tm.htm
    • …
    corecore