2,844 research outputs found

    On Second-Order Monadic Monoidal and Groupoidal Quantifiers

    Get PDF
    We study logics defined in terms of second-order monadic monoidal and groupoidal quantifiers. These are generalized quantifiers defined by monoid and groupoid word-problems, equivalently, by regular and context-free languages. We give a computational classification of the expressive power of these logics over strings with varying built-in predicates. In particular, we show that ATIME(n) can be logically characterized in terms of second-order monadic monoidal quantifiers

    A decidable policy language for history-based transaction monitoring

    Full text link
    Online trading invariably involves dealings between strangers, so it is important for one party to be able to judge objectively the trustworthiness of the other. In such a setting, the decision to trust a user may sensibly be based on that user's past behaviour. We introduce a specification language based on linear temporal logic for expressing a policy for categorising the behaviour patterns of a user depending on its transaction history. We also present an algorithm for checking whether the transaction history obeys the stated policy. To be useful in a real setting, such a language should allow one to express realistic policies which may involve parameter quantification and quantitative or statistical patterns. We introduce several extensions of linear temporal logic to cater for such needs: a restricted form of universal and existential quantification; arbitrary computable functions and relations in the term language; and a "counting" quantifier for counting how many times a formula holds in the past. We then show that model checking a transaction history against a policy, which we call the history-based transaction monitoring problem, is PSPACE-complete in the size of the policy formula and the length of the history. The problem becomes decidable in polynomial time when the policies are fixed. We also consider the problem of transaction monitoring in the case where not all the parameters of actions are observable. We formulate two such "partial observability" monitoring problems, and show their decidability under certain restrictions

    Theories for TC0 and Other Small Complexity Classes

    Full text link
    We present a general method for introducing finitely axiomatizable "minimal" two-sorted theories for various subclasses of P (problems solvable in polynomial time). The two sorts are natural numbers and finite sets of natural numbers. The latter are essentially the finite binary strings, which provide a natural domain for defining the functions and sets in small complexity classes. We concentrate on the complexity class TC^0, whose problems are defined by uniform polynomial-size families of bounded-depth Boolean circuits with majority gates. We present an elegant theory VTC^0 in which the provably-total functions are those associated with TC^0, and then prove that VTC^0 is "isomorphic" to a different-looking single-sorted theory introduced by Johannsen and Pollet. The most technical part of the isomorphism proof is defining binary number multiplication in terms a bit-counting function, and showing how to formalize the proofs of its algebraic properties.Comment: 40 pages, Logical Methods in Computer Scienc

    Complexity of short Presburger arithmetic

    Full text link
    We study complexity of short sentences in Presburger arithmetic (Short-PA). Here by "short" we mean sentences with a bounded number of variables, quantifiers, inequalities and Boolean operations; the input consists only of the integers involved in the inequalities. We prove that assuming Kannan's partition can be found in polynomial time, the satisfiability of Short-PA sentences can be decided in polynomial time. Furthermore, under the same assumption, we show that the numbers of satisfying assignments of short Presburger sentences can also be computed in polynomial time
    • …
    corecore