12,046 research outputs found

    Quasiclassical Coarse Graining and Thermodynamic Entropy

    Get PDF
    Our everyday descriptions of the universe are highly coarse-grained, following only a tiny fraction of the variables necessary for a perfectly fine-grained description. Coarse graining in classical physics is made natural by our limited powers of observation and computation. But in the modern quantum mechanics of closed systems, some measure of coarse graining is inescapable because there are no non-trivial, probabilistic, fine-grained descriptions. This essay explores the consequences of that fact. Quantum theory allows for various coarse-grained descriptions some of which are mutually incompatible. For most purposes, however, we are interested in the small subset of ``quasiclassical descriptions'' defined by ranges of values of averages over small volumes of densities of conserved quantities such as energy and momentum and approximately conserved quantities such as baryon number. The near-conservation of these quasiclassical quantities results in approximate decoherence, predictability, and local equilibrium, leading to closed sets of equations of motion. In any description, information is sacrificed through the coarse graining that yields decoherence and gives rise to probabilities for histories. In quasiclassical descriptions, further information is sacrificed in exhibiting the emergent regularities summarized by classical equations of motion. An appropriate entropy measures the loss of information. For a ``quasiclassical realm'' this is connected with the usual thermodynamic entropy as obtained from statistical mechanics. It was low for the initial state of our universe and has been increasing since.Comment: 17 pages, 0 figures, revtex4, Dedicated to Rafael Sorkin on his 60th birthday, minor correction

    Quantum Pasts and the Utility of History

    Get PDF
    From data in the present we can predict the future and retrodict the past. These predictions and retrodictions are for histories -- most simply time sequences of events. Quantum mechanics gives probabilities for individual histories in a decoherent set of alternative histories. This paper discusses several issues connected with the distinction between prediction and retrodiction in quantum cosmology: the difference between classical and quantum retrodiction, the permanence of the past, why we predict the future but remember the past, the nature and utility of reconstructing the past(s), and information theoretic measures of the utility of history. (Talk presented at the Nobel Symposium: Modern Studies of Basic Quantum Concepts and Phenomena, Gimo, Sweden, June 13-17, 1997)Comment: 22pages, uses REVTEX 3.
    • …
    corecore