12,493 research outputs found

    Collaboration in the Semantic Grid: a Basis for e-Learning

    Get PDF
    The CoAKTinG project aims to advance the state of the art in collaborative mediated spaces for the Semantic Grid. This paper presents an overview of the hypertext and knowledge based tools which have been deployed to augment existing collaborative environments, and the ontology which is used to exchange structure, promote enhanced process tracking, and aid navigation of resources before, after, and while a collaboration occurs. While the primary focus of the project has been supporting e-Science, this paper also explores the similarities and application of CoAKTinG technologies as part of a human-centred design approach to e-Learning

    The Jiminy Advisor: Moral Agreements Among Stakeholders Based on Norms and Argumentation

    Full text link
    An autonomous system is constructed by a manufacturer, operates in a society subject to norms and laws, and is interacting with end users. All of these actors are stakeholders affected by the behavior of the autonomous system. We address the challenge of how the ethical views of such stakeholders can be integrated in the behavior of the autonomous system. We propose an ethical recommendation component, which we call Jiminy, that uses techniques from normative systems and formal argumentation to reach moral agreements among stakeholders. Jiminy represents the ethical views of each stakeholder by using normative systems, and has three ways of resolving moral dilemmas involving the opinions of the stakeholders. First, Jiminy considers how the arguments of the stakeholders relate to one another, which may already resolve the dilemma. Secondly, Jiminy combines the normative systems of the stakeholders such that the combined expertise of the stakeholders may resolve the dilemma. Thirdly, and only if these two other methods have failed, Jiminy uses context-sensitive rules to decide which of the stakeholders take preference. At the abstract level, these three methods are characterized by the addition of arguments, the addition of attacks among arguments, and the removal of attacks among arguments. We show how Jiminy can be used not only for ethical reasoning and collaborative decision making, but also for providing explanations about ethical behavior

    An Editorial Workflow Approach For Collaborative Ontology Development

    Get PDF
    The widespread use of ontologies in the last years has raised new challenges for their development and maintenance. Ontology development has transformed from a process normally performed by one ontology engineer into a process performed collaboratively by a team of ontology engineers, who may be geographically distributed and play different roles. For example, editors may propose changes, while authoritative users approve or reject them following a well defined process. This process, however, has only been partially addressed by existing ontology development methods, methodologies, and tool support. Furthermore, in a distributed environment where ontology editors may be working on local copies of the same ontology, strategies should be in place to ensure that changes in one copy are reflected in all of them. In this paper, we propose a workflow-based model for the collaborative development of ontologies in distributed environments and describe the components required to support them. We illustrate our model with a test case in the fishery domain from the United Nations Food and Agriculture Organisation (FAO)

    Sensemaking on the Pragmatic Web: A Hypermedia Discourse Perspective

    Get PDF
    The complexity of the dilemmas we face on an organizational, societal and global scale forces us into sensemaking activity. We need tools for expressing and contesting perspectives flexible enough for real time use in meetings, structured enough to help manage longer term memory, and powerful enough to filter the complexity of extended deliberation and debate on an organizational or global scale. This has been the motivation for a programme of basic and applied action research into Hypermedia Discourse, which draws on research in hypertext, information visualization, argumentation, modelling, and meeting facilitation. This paper proposes that this strand of work shares a key principle behind the Pragmatic Web concept, namely, the need to take seriously diverse perspectives and the processes of meaning negotiation. Moreover, it is argued that the hypermedia discourse tools described instantiate this principle in practical tools which permit end-user control over modelling approaches in the absence of consensus

    Semantic learning webs

    Get PDF
    By 2020, microprocessors will likely be as cheap and plentiful as scrap paper,scattered by the millions into the environment, allowing us to place intelligent systems everywhere. This will change everything around us, including the nature of commerce, the wealth of nations, and the way we communicate, work, play, and live. This will give us smart homes, cars, TVs , jewellery, and money. We will speak to our appliances, and they will speak back. Scientists also expect the Internet will wire up the entire planet and evolve into a membrane consisting of millions of computer networks, creating an “intelligent planet.” The Internet will eventually become a “Magic Mirror” that appears in fairy tales, able to speak with the wisdom of the human race. Michio Kaku, Visions: How Science Will Revolutionize the Twenty - First Century, 1998 If the semantic web needed a symbol, a good one to use would be a Navaho dream-catcher: a small web, lovingly hand-crafted, [easy] to look at, and rumored to catch dreams; but really more of a symbol than a reality. Pat Hayes, Catching the Dreams, 2002 Though it is almost impossible to envisage what the Web will be like by the end of the next decade, we can say with some certainty that it will have continued its seemingly unstoppable growth. Given the investment of time and money in the Semantic Web (Berners-Lee et al., 2001), we can also be sure that some form of semanticization will have taken place. This might be superficial - accomplished simply through the addition of loose forms of meta-data mark-up, or more principled – grounded in ontologies and formalised by means of emerging semantic web standards, such as RDF (Lassila and Swick, 1999) or OWL (Mc Guinness and van Harmelen, 2003). Whatever the case, the addition of semantic mark-up will make at least part of the Web more readily accessible to humans and their software agents and will facilitate agent interoperability. If current research is successful there will also be a plethora of e-learning platforms making use of a varied menu of reusable educational material or learning objects. For the learner, the semanticized Web will, in addition, offer rich seams of diverse learning resources over and above the course materials (or learning objects) specified by course designers. For instance, the annotation registries, which provide access to marked up resources, will enable more focussed, ontologically-guided (or semantic) search. This much is already in development. But we can go much further. Semantic technologies make it possible not only to reason about the Web as if it is one extended knowledge base but also to provide a range of additional educational semantic web services such as summarization, interpretation or sense-making, structure-visualization, and support for argumentation
    corecore