8,792 research outputs found

    Area-Universal Rectangular Layouts

    Get PDF
    A rectangular layout is a partition of a rectangle into a finite set of interior-disjoint rectangles. Rectangular layouts appear in various applications: as rectangular cartograms in cartography, as floorplans in building architecture and VLSI design, and as graph drawings. Often areas are associated with the rectangles of a rectangular layout and it might hence be desirable if one rectangular layout can represent several area assignments. A layout is area-universal if any assignment of areas to rectangles can be realized by a combinatorially equivalent rectangular layout. We identify a simple necessary and sufficient condition for a rectangular layout to be area-universal: a rectangular layout is area-universal if and only if it is one-sided. More generally, given any rectangular layout L and any assignment of areas to its regions, we show that there can be at most one layout (up to horizontal and vertical scaling) which is combinatorially equivalent to L and achieves a given area assignment. We also investigate similar questions for perimeter assignments. The adjacency requirements for the rectangles of a rectangular layout can be specified in various ways, most commonly via the dual graph of the layout. We show how to find an area-universal layout for a given set of adjacency requirements whenever such a layout exists.Comment: 19 pages, 16 figure

    Orientation-Constrained Rectangular Layouts

    Full text link
    We construct partitions of rectangles into smaller rectangles from an input consisting of a planar dual graph of the layout together with restrictions on the orientations of edges and junctions of the layout. Such an orientation-constrained layout, if it exists, may be constructed in polynomial time, and all orientation-constrained layouts may be listed in polynomial time per layout.Comment: To appear at Algorithms and Data Structures Symposium, Banff, Canada, August 2009. 12 pages, 5 figure

    Exploiting Air-Pressure to Map Floorplans on Point Sets

    Full text link
    We prove a conjecture of Ackerman, Barequet and Pinter. Every floorplan with n segments can be embedded on every set of n points in generic position. The construction makes use of area universal floorplans also known as area universal rectangular layouts. The notion of area used in our context depends on a nonuniform density function. We, therefore, have to generalize the theory of area universal floorplans to this situation. The method is then used to prove a result about accommodating points in floorplans that is slightly more general than the conjecture of Ackerman et al

    Fast filtering and animation of large dynamic networks

    Full text link
    Detecting and visualizing what are the most relevant changes in an evolving network is an open challenge in several domains. We present a fast algorithm that filters subsets of the strongest nodes and edges representing an evolving weighted graph and visualize it by either creating a movie, or by streaming it to an interactive network visualization tool. The algorithm is an approximation of exponential sliding time-window that scales linearly with the number of interactions. We compare the algorithm against rectangular and exponential sliding time-window methods. Our network filtering algorithm: i) captures persistent trends in the structure of dynamic weighted networks, ii) smoothens transitions between the snapshots of dynamic network, and iii) uses limited memory and processor time. The algorithm is publicly available as open-source software.Comment: 6 figures, 2 table

    Low loss, high contrast optical waveguides based on CMOS compatible LPCVD processing

    Get PDF
    A new class of integrated optical waveguide structures is presented, based on low cost CMOS compatible LPCVD processing. This technology allows for medium and high index contrast waveguides with very low channel attenuation. The geometry is basically formed by a rectangular cross-section silicon nitride (Si3N4)(Si_{3}N_{4}) filled with and encapsulated by silicon dioxide (SiO2)(SiO_{2}). The birefringence and minimal bend radius of the waveguide is completely controlled by the geometry of the waveguide layer structures. Experiments on typical geometries will be presented, showing excellent characteristics (channel attenuation ≤0.06 dB/cm, IL ≤0.6 dB, PDL ≤0.2 dB, Bg «1 x 10310^{-3}, bend radius ≤500 μm)
    corecore