524 research outputs found

    Serial-data computation in VLSI

    Get PDF

    Area-Time Optimal VLSI Networks for Matrix Multiplication and Inversion of Triangular Matrices

    Get PDF
    Coordinated Science Laboratory was formerly known as Control Systems LaboratoryJoint Services Electronics Program / N00014-79-C-0424National Science Foundation / MCS 78-1364

    A Bit Serial Approach to Massively Parallel Floating Point Operations on an FPGA

    Get PDF
    In this paper we discuss the pros and cons of bit serial arithmetic for performing mathematical operations for signal processing and scientific computations on an FPGA. We describe our formulation of the architecture for such massively parallel systems, the advantage being that it requires no parallel programming in the traditional sense. We describe a pseudo floating point bit serial circuit which is less complex than full precision floating point and show that it is suitable for many applications. We conclude with several application examples and show that a bit serial implementation can be competitive with a high speed parallel implementation

    An Efficient Reconfigurable Architecture for Fingerprint Recognition

    Get PDF
    The fingerprint identification is an efficient biometric technique to authenticate human beings in real-time Big Data Analytics. In this paper, we propose an efficient Finite State Machine (FSM) based reconfigurable architecture for fingerprint recognition. The fingerprint image is resized, and Compound Linear Binary Pattern (CLBP) is applied on fingerprint, followed by histogram to obtain histogram CLBP features. Discrete Wavelet Transform (DWT) Level 2 features are obtained by the same methodology. The novel matching score of CLBP is computed using histogram CLBP features of test image and fingerprint images in the database. Similarly, the DWT matching score is computed using DWT features of test image and fingerprint images in the database. Further, the matching scores of CLBP and DWT are fused with arithmetic equation using improvement factor. The performance parameters such as TSR (Total Success Rate), FAR (False Acceptance Rate), and FRR (False Rejection Rate) are computed using fusion scores with correlation matching technique for FVC2004 DB3 Database. The proposed fusion based VLSI architecture is synthesized on Virtex xc5vlx30T-3 FPGA board using Finite State Machine resulting in optimized parameters

    Reliable and Efficient Parallel Processing Algorithms and Architectures for Modern Signal Processing

    Get PDF
    Least-squares (LS) estimations and spectral decomposition algorithms constitute the heart of modern signal processing and communication problems. Implementations of recursive LS and spectral decomposition algorithms onto parallel processing architectures such as systolic arrays with efficient fault-tolerant schemes are the major concerns of this dissertation. There are four major results in this dissertation. First, we propose the systolic block Householder transformation with application to the recursive least-squares minimization. It is successfully implemented on a systolic array with a two-level pipelined implementation at the vector level as well as at the word level. Second, a real-time algorithm-based concurrent error detection scheme based on the residual method is proposed for the QRD RLS systolic array. The fault diagnosis, order degraded reconfiguration, and performance analysis are also considered. Third, the dynamic range, stability, error detection capability under finite-precision implementation, order degraded performance, and residual estimation under faulty situations for the QRD RLS systolic array are studied in details. Finally, we propose the use of multi-phase systolic algorithms for spectral decomposition based on the QR algorithm. Two systolic architectures, one based on triangular array and another based on rectangular array, are presented for the multiphase operations with fault-tolerant considerations. Eigenvectors and singular vectors can be easily obtained by using the multi-pase operations. Performance issues are also considered

    Video post processing architectures

    Get PDF

    Thermal and Electrical Parasitic Modeling for Multi-Chip Power Module Layout Synthesis

    Get PDF
    This thesis presents thermal and electrical parasitic modeling approaches for layout synthesis of Multi-Chip Power Modules (MCPMs). MCPMs integrate power semiconductor devices and drive electronics into a single package. As the switching frequency of power devices increases, the size of the passive components are greatly reduced leading to gains in efficiency and cost reduction. In order to increase switching frequency, electrical parasitics in MCPMs need to be reduced through tighter electronic integrations and smaller packages. As package size is decreased, temperature increases due to less heat dissipation capability. Thus, it is crucial to consider both thermal and electrical parasitics in order to avoid premature device failure. Traditionally, the evaluation of the temperature and electrical parasitics of an MCPM requires the layout to be changed iteratively by hand and verified via finite element analysis (FEA) tools. The novel thermal and electrical parasitics models developed in this thesis predict temperature and electrical parasitics of an MCPM according to varied layouts. Multi-Objective optimization methods are applied to the models to find optimal layouts and tradeoffs of MCPM layouts
    • …
    corecore