93 research outputs found

    Surveillance centric coding

    Get PDF
    PhDThe research work presented in this thesis focuses on the development of techniques specific to surveillance videos for efficient video compression with higher processing speed. The Scalable Video Coding (SVC) techniques are explored to achieve higher compression efficiency. The framework of SVC is modified to support Surveillance Centric Coding (SCC). Motion estimation techniques specific to surveillance videos are proposed in order to speed up the compression process of the SCC. The main contributions of the research work presented in this thesis are divided into two groups (i) Efficient Compression and (ii) Efficient Motion Estimation. The paradigm of Surveillance Centric Coding (SCC) is introduced, in which coding aims to achieve bit-rate optimisation and adaptation of surveillance videos for storing and transmission purposes. In the proposed approach the SCC encoder communicates with the Video Content Analysis (VCA) module that detects events of interest in video captured by the CCTV. Bit-rate optimisation and adaptation are achieved by exploiting the scalability properties of the employed codec. Time segments containing events relevant to surveillance application are encoded using high spatiotemporal resolution and quality while the irrelevant portions from the surveillance standpoint are encoded at low spatio-temporal resolution and / or quality. Thanks to the scalability of the resulting compressed bit-stream, additional bit-rate adaptation is possible; for instance for the transmission purposes. Experimental evaluation showed that significant reduction in bit-rate can be achieved by the proposed approach without loss of information relevant to surveillance applications. In addition to more optimal compression strategy, novel approaches to performing efficient motion estimation specific to surveillance videos are proposed and implemented with experimental results. A real-time background subtractor is used to detect the presence of any motion activity in the sequence. Different approaches for selective motion estimation, GOP based, Frame based and Block based, are implemented. In the former, motion estimation is performed for the whole group of pictures (GOP) only when a moving object is detected for any frame of the GOP. iii While for the Frame based approach; each frame is tested for the motion activity and consequently for selective motion estimation. The selective motion estimation approach is further explored at a lower level as Block based selective motion estimation. Experimental evaluation showed that significant reduction in computational complexity can be achieved by applying the proposed strategy. In addition to selective motion estimation, a tracker based motion estimation and fast full search using multiple reference frames has been proposed for the surveillance videos. Extensive testing on different surveillance videos shows benefits of application of proposed approaches to achieve the goals of the SCC

    MASCOT : metadata for advanced scalable video coding tools : final report

    Get PDF
    The goal of the MASCOT project was to develop new video coding schemes and tools that provide both an increased coding efficiency as well as extended scalability features compared to technology that was available at the beginning of the project. Towards that goal the following tools would be used: - metadata-based coding tools; - new spatiotemporal decompositions; - new prediction schemes. Although the initial goal was to develop one single codec architecture that was able to combine all new coding tools that were foreseen when the project was formulated, it became clear that this would limit the selection of the new tools. Therefore the consortium decided to develop two codec frameworks within the project, a standard hybrid DCT-based codec and a 3D wavelet-based codec, which together are able to accommodate all tools developed during the course of the project

    Wireless triple play system

    Get PDF
    Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e ComputadoresTriple play is a service that combines three types of services: voice, data and multimedia over a single communication channel for a price that is less than the total price of the individual services. However there is no standard for provisioning the Triple play services, rather they are provisioned individually, since the requirements are quite different for each service. The digital revolution helped to create and deliver a high quality media solutions. One of the most demanding services is the Video on Demand (VoD). This implicates a dedicated streaming channel for each user in order to provide normal media player commands (as pause, fast forward). Most of the multimedia companies that develops personalized products does not always fulfil the users needs and are far from being cheap solutions. The goal of the project was to create a reliable and scalable triple play solution that works via Wireless Local Area Network (WLAN), fully capable of dealing with the existing state of the art multimedia technologies only resorting to open-source tools. This project was design to be a transparent web environment using only web technologies to maximize the potential of the services. HyperText Markup Language (HTML),Cascading Style Sheets (CSS) and JavaScript were the used technologies for the development of the applications. Both a administration and user interfaces were developed to fully manage all video contents and properly view it in a rich and appealing application, providing the proof of concept. The developed prototype was tested in a WLAN with up to four clients and the Quality of Service (QoS) and Quality of Experience (QoE) was measured for several combinations of active services. In the end it is possible to acknowledge that the developed prototype was capable of dealing with all the problems of WLAN technologies and successfully delivery all the proposed services with high QoE
    corecore