9,407 research outputs found

    On the design of software and hardware for a WSN transmitter

    Get PDF
    Software defined radios (SDR) are booming. However, for a final breakthrough these systems need to be versatile, inexpensive and easy to program. In this paper a next step is taken to meet all these requirements. Our hardware consists of a computer with an affordable data acquisition (DAQ) card and a cheap self-made single-stage up-converter. The software is written in the slow learning-curve graphical programming environment LabVIEW. To prove the versatility of our SDR transmitter concept, we send packets with the wireless sensor networks (WSN) protocol IEEE 802.15.4, which are received by an existing packet sniffer

    A Wide Range and High Swing Charge Pump for Phase Locked Loop in Phasor Measurement Unit

    Get PDF
    ยฉ 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. Phasor Measurement Units are widely utilized in power systems to provide synchrophasor data for a verity of applications, mainly performed by Energy Management Systems (EMS). Synchrophasors are measured at different parts of the network and transmitted to Phasor Data Concentrator (PDC) at a rate of 30-60 samples per second. The synchronization is done by means of a phase locked oscillator inside PMU which uses clock signal of the Global Positioning System (GPS). In this paper a novel charge pump with an appropriate operation capability in phaselocked-loops is presented. By using this phase locked loop in phasor measurement unit, the total performance of this circuit will be improved. The proposed charge pump uses current mirror techniques in order to achieve a wide range of output voltage to control the oscillator and also has a good performance in a wide frequency range from 33MHz to 555MHz. This circuit is designed and simulated in TSMC 0.18ฮผm CMOS technology. The proposed charge pump only consumes 390ฮผW power in supply voltage of 1.8V at 500MHz and has a maximum current of 16.43ฮผA with an acceptable current matching between source and sink currents. It is also capable to be used in a wide frequency range and low power applications

    Switched Capacitor Loop Filter ์™€ Source Switched Charge Pump ๋ฅผ ์ด์šฉํ•œ Phase-Locked Loop ์˜ ์„ค๊ณ„

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2022.2. ์ •๋•๊ท .This thesis proposes a low integrated RMS jitter and low reference spur phase locked loop (PLL) using a switched capacitor loop filter and source switched charge pump. The PLL employs a single tunable charge pump which reduces current mis match across wide control voltage range and charge sharing effect to get high perfor mance of reference spur level. The switched capacitor loop filter is adopted to achieve insensitivity to temperature, supply voltage, and process variation of a resistor. The proposed PLL covers a wide frequency range and has a low integrated RMS jitter and low reference spur level to target various interface standards. The mechanism of switched capacitor loop filter and source switched charge pump is analyzed. Fabricated in 40 nm CMOS technology, the proposed analog PLL provides four phase for a quarter-rate transmitter, consumes 6.35 mW at 12 GHz using 750 MHz reference clock, and occupies an 0.008 mm2 with an integrated RMS jitter (10 kHz to 100 MHz) of 244.8 fs. As a result, the PLL achieves a figure of merit (FoM) of -244.2 dB with high power efficiency of 0.53 mW/GHz, and reference spur level is -60.3 dBc.๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๋‚ฎ์€ RMS jitter ์™€ ๋‚ฎ์€ ๋ ˆํผ๋Ÿฐ์Šค ์Šคํผ๋ฅผ ๊ฐ€์ง€๋ฉฐ ์Šค์œ„์น˜์ถ•์ „๊ธฐ ๋ฃจํ”„ ํ•„ํ„ฐ์™€ ์†Œ์Šค ์Šค์œ„์น˜ ์ „ํ•˜ ํŽŒํ”„๋ฅผ ์ด์šฉํ•œ PLL ์„ ์ œ์•ˆํ•œ๋‹ค. ์ œ์•ˆ๋œ PLL ์€ ๋ ˆํผ๋Ÿฐ์Šค ์Šคํผ์˜ ์„ฑ๋Šฅ์„ ์œ„ํ•ด ๋„“์€ ์ปจํŠธ๋กค ์ „์••์˜ ๋ฒ”์œ„ ๋™์•ˆ ์ „๋ฅ˜์˜ ์˜ค์ฐจ๋ฅผ ์ค„์—ฌ์ฃผ๊ณ  ์ „ํ•˜ ๊ณต์œ  ํšจ๊ณผ๋ฅผ ์ค„์—ฌ์ฃผ๋Š” ํ•˜๋‚˜์˜ ์กฐ์ ˆ ๊ฐ€๋Šฅํ•œ ์ „ํ•˜ ํŽŒํ”„๋ฅผ ์‚ฌ์šฉํ•˜์˜€๋‹ค. ์ €ํ•ญ์˜ ์˜จ๋„, ๊ณต๊ธ‰ ์ „์••, ๊ณต์ • ๋ณ€ํ™”์— ๋”ฐ๋ฅธ ๋ฏผ๊ฐ๋„๋ฅผ ๋‚ฎ์ถ”๊ธฐ ์œ„ํ•ด ์Šค์œ„์น˜ ์ถ•์ „๊ธฐ ๋ฃจํ”„ ํ•„ํ„ฐ๊ฐ€ ์‚ฌ์šฉ๋˜์—ˆ๋‹ค. ๋‹ค์–‘ํ•œ ์ธํ„ฐํŽ˜์ด์Šค ํ‘œ์ค€์„ ์ง€์›ํ•˜๊ธฐ ์œ„ํ•ด ์ œ์•ˆํ•˜๋Š” PLL ์€ ๋„“์€ ์ฃผํŒŒ์ˆ˜ ๋ฒ”์œ„๋ฅผ ์ง€์›ํ•˜๊ณ  ๋‚ฎ์€ RMS jitter ์™€ ๋‚ฎ์€ ๋ ˆํผ๋Ÿฐ์Šค ์Šคํผ๋ฅผ ๊ฐ–๋Š”๋‹ค. ์Šค์œ„์น˜ ์ถ•์ „๊ธฐ ๋ฃจํ”„ ํ•„ํ„ฐ์™€ ์†Œ์Šค ์Šค์œ„์น˜ ์ „ํ•˜ ํŽŒํ”„์˜ ๋™์ž‘ ์›๋ฆฌ์— ๋Œ€ํ•ด ๋ถ„์„ํ•˜์˜€๋‹ค. 40 nm CMOS ๊ณต์ •์œผ๋กœ ์ œ์ž‘๋˜์—ˆ์œผ๋ฉฐ, ์ œ์•ˆ๋œ ํšŒ๋กœ๋Š” quarter-rate ์†ก์‹ ๊ธฐ๋ฅผ ์œ„ํ•ด 4 ๊ฐœ์˜ phase ๋ฅผ ๋งŒ๋“ค์–ด๋‚ด๋ฉฐ 750 MHz ์˜ ๋ ˆํผ๋Ÿฐ์Šค ํด๋ฝ์„ ์ด์šฉํ•˜์—ฌ 12 GHz ์—์„œ 6.35 mW ์˜ power ๋ฅผ ์†Œ๋ชจํ•˜๊ณ  0.008mm2 ์˜ ์œ ํšจ ๋ฉด์ ์„ ์ฐจ์ง€ํ•˜๊ณ  10 kHz ๋ถ€ํ„ฐ 100 MHz ๊นŒ์ง€ ์ ๋ถ„ํ–ˆ์„ ๋•Œ์˜ RMS jitter ๊ฐ’์€ 244.8fs ์ด๋‹ค. ์ œ์•ˆํ•˜๋Š” PLL ์€ -244.2 dB ์˜ FoM, 0.53 mW/GHz ์˜ power ํšจ์œจ์„ ๋‹ฌ์„ฑํ–ˆ์œผ๋ฉฐ ๋ ˆํผ๋Ÿฐ์Šค ์Šคํผ๋Š” -60.3 dBc ์ด๋‹คCHAPTER 1 INTRODUCTION 1 1.1 MOTIVATION 1 1.2 THESIS ORGANIZATION 3 CHAPTER 2 BACKGROUNDS 4 2.1 CLOCK GENERATION IN SERIAL LINK 4 2.2 PLL BUILDING BLOCKS 6 2.2.1 OVERVIEW 6 2.2.2 PHASE FREQUENCY DETECTOR 7 2.2.3 CHARGE PUMP AND LOOP FILTER 9 2.2.4 VOLTAGE CONTROLLED OSCILLATOR 10 2.2.5 FREQUENCY DIVIDER 13 2.3 PLL LOOP ANALYSIS 15 CHAPTER 3 PLL WITH SWITCHED CAPACITOR LOOP FILTER AND SOURCE SWITCHED CHARGE PUMP 19 3.1 DESIGN CONSIDERATION 19 3.2 PROPOSED ARCHITECTURE 21 3.3 CIRCUIT IMPLEMENTATION 23 3.3.1 PHASE FREQUENCY DETECTOR 23 3.3.2 SOURCE SWITCHED CHARGE PUMP 26 3.3.3 SWITCHED CAPACITOR LOOP FILTER 30 3.3.4 VOLTAGE CONTROLLED OSCILLATOR 35 3.3.5 POST VCO AMPLIFIER 39 3.3.6 FREQUENCY DIVIDER 40 CHAPTER 4 MEASUREMENT RESULTS 43 4.1 CHIP PHOTOMICROGRAPH 43 4.2 MEASUREMENT SETUP 45 4.3 MEASURED PHASE NOISE AND REFERENCE SPUR 47 4.4 PERFORMANCE SUMMARY 50 CHAPTER 5 CONCLUSION 52 BIBLIOGRAPHY 53 ์ดˆ ๋ก 58์„

    An Energy-Efficient Reconfigurable Mobile Memory Interface for Computing Systems

    Get PDF
    The critical need for higher power efficiency and bandwidth transceiver design has significantly increased as mobile devices, such as smart phones, laptops, tablets, and ultra-portable personal digital assistants continue to be constructed using heterogeneous intellectual properties such as central processing units (CPUs), graphics processing units (GPUs), digital signal processors, dynamic random-access memories (DRAMs), sensors, and graphics/image processing units and to have enhanced graphic computing and video processing capabilities. However, the current mobile interface technologies which support CPU to memory communication (e.g. baseband-only signaling) have critical limitations, particularly super-linear energy consumption, limited bandwidth, and non-reconfigurable data access. As a consequence, there is a critical need to improve both energy efficiency and bandwidth for future mobile devices.;The primary goal of this study is to design an energy-efficient reconfigurable mobile memory interface for mobile computing systems in order to dramatically enhance the circuit and system bandwidth and power efficiency. The proposed energy efficient mobile memory interface which utilizes an advanced base-band (BB) signaling and a RF-band signaling is capable of simultaneous bi-directional communication and reconfigurable data access. It also increases power efficiency and bandwidth between mobile CPUs and memory subsystems on a single-ended shared transmission line. Moreover, due to multiple data communication on a single-ended shared transmission line, the number of transmission lines between mobile CPU and memories is considerably reduced, resulting in significant technological innovations, (e.g. more compact devices and low cost packaging to mobile communication interface) and establishing the principles and feasibility of technologies for future mobile system applications. The operation and performance of the proposed transceiver are analyzed and its circuit implementation is discussed in details. A chip prototype of the transceiver was implemented in a 65nm CMOS process technology. In the measurement, the transceiver exhibits higher aggregate data throughput and better energy efficiency compared to prior works
    • โ€ฆ
    corecore