13 research outputs found

    Decomposition and encoding of finite state machines for FPGA implementation

    Get PDF
    xii+187hlm.;24c

    Generic low power reconfigurable distributed arithmetic processor

    Get PDF
    Higher performance, lower cost, increasingly minimizing integrated circuit components, and higher packaging density of chips are ongoing goals of the microelectronic and computer industry. As these goals are being achieved, however, power consumption and flexibility are increasingly becoming bottlenecks that need to be addressed with the new technology in Very Large-Scale Integrated (VLSI) design. For modern systems, more energy is required to support the powerful computational capability which accords with the increasing requirements, and these requirements cause the change of standards not only in audio and video broadcasting but also in communication such as wireless connection and network protocols. Powerful flexibility and low consumption are repellent, but their combination in one system is the ultimate goal of designers. A generic domain-specific low-power reconfigurable processor for the distributed arithmetic algorithm is presented in this dissertation. This domain reconfigurable processor features high efficiency in terms of area, power and delay, which approaches the performance of an ASIC design, while retaining the flexibility of programmable platforms. The architecture not only supports typical distributed arithmetic algorithms which can be found in most still picture compression standards and video conferencing standards, but also offers implementation ability for other distributed arithmetic algorithms found in digital signal processing, telecommunication protocols and automatic control. In this processor, a simple reconfigurable low power control unit is implemented with good performance in area, power and timing. The generic characteristic of the architecture makes it applicable for any small and medium size finite state machines which can be used as control units to implement complex system behaviour and can be found in almost all engineering disciplines. Furthermore, to map target applications efficiently onto the proposed architecture, a new algorithm is introduced for searching for the best common sharing terms set and it keeps the area and power consumption of the implementation at low level. The software implementation of this algorithm is presented, which can be used not only for the proposed architecture in this dissertation but also for all the implementations with adder-based distributed arithmetic algorithms. In addition, some low power design techniques are applied in the architecture, such as unsymmetrical design style including unsymmetrical interconnection arranging, unsymmetrical PTBs selection and unsymmetrical mapping basic computing units. All these design techniques achieve extraordinary power consumption saving. It is believed that they can be extended to more low power designs and architectures. The processor presented in this dissertation can be used to implement complex, high performance distributed arithmetic algorithms for communication and image processing applications with low cost in area and power compared with the traditional methods

    Arquitecturas reconfiguráveis para problemas de optimização combinatória

    Get PDF
    Os problemas combinatórios têm uma gama extremamente ampla de aplicações numa variedade de áreas de engenharia, incluindo teste de circuitos electrónicos, reconhecimento de padrões, síntese lógica, etc. Muitos dos problemas de interesse pertencem às classes NP-hard e NP-complete, o que implica que os algoritmos relevantes têm no pior caso complexidade exponencial. Este facto impede a solução de muitos problemas práticos com a ajuda de computadores convencionais. As implementações em circuitos integrados específicos também não são viáveis, em particular por causa da própria heterogeneidade dos problemas combinatórios. Uma solução alternativa consiste no uso de dispositivos reconfiguráveis que podem ser personalizados para um algoritmo específico e reutilizados para outros algoritmos via uma simples reprogramação da sua estrutura interna. As implementações baseadas em hardware reconfigurável permitem optimizar a execução dos algoritmos relevantes com a ajuda de técnicas tais como processamento paralelo, unidades funcionais personalizadas, etc. Tais implementações possibilitam conter o efeito de crescimento exponencial do tempo de computação, permitindo deste modo a solução de problemas combinatórios complexos. Recentemente foram desenvolvidos vários sistemas reconfiguráveis destinados a resolver problemas combinatórios. Estes são principalmente baseados na ideia de hardware específico para a instância, em que para cada instância do problema é gerado um circuito particular. Nesta tese exploramos duas abordagens alternativas. A primeira é orientada para o domínio e permite processar uma variedade de problemas da área da computação combinatória. Para tal é projectado e implementado um processador combinatório reconfigurável e são desenvolvidos métodos e ferramentas que asseguram a sua reconfiguração dinâmica parcial. A segunda abordagem é orientada para a aplicação e é destinada a resolver um problema combinatório específico. Em particular, é proposta uma arquitectura inovadora para a solução do problema de satisfação booleana com a ajuda de uma combinação de software e de hardware reconfigurável. A técnica adoptada elimina a compilação de hardware específica à instância e permite processar problemas que excedem os recursos lógicos disponíveis. São também exploradas as possibilidades de implementação em hardware reconfigurável de estratégias evolutivas para o caso do problema do caixeiro viajante. Esta tese estende o domínio de aplicação da computação reconfigurável ao demonstrar que esta é capaz de acelerar algoritmos com fluxos de controlo complexos.Combinatorial problems have an extremely wide range of practical applications in a variety of engineering areas, including the testing of electronic circuits, pattern recognition, logic synthesis, etc. Many of the problems of interest belong to the classes NP-hard and NP-complete, which implies that the relevant algorithms have an exponential worst-case complexity. This fact precludes the solution of many practical problems with conventional computers. ASIC-based implementations are also not viable, in particular because of the inherent heterogeneity of combinatorial problems. Reconfigurable devices offer an alternative solution, which can be customized to the requirements of a specific algorithm and reutilized for other algorithms via a simple reprogramming of their internal structure. Implementations based on reconfigurable hardware permit the execution of the relevant algorithms to be optimized with the aid of such techniques as parallel processing, personalized functional units, etc. Such implementations allow the effect of exponential growth in the computation time to be delayed, thus enabling more complex problem instances to be solved. Recently, a few reconfigurable engines for combinatorial problems have been developed. They are mainly based on the idea of instance-specific hardware, which assumes that a particular circuit is generated for each problem instance. In this thesis we explore two alternative approaches. The first, domain-specific, approach enables a variety of problems in the area of combinatorial computation to be addressed. For this purpose, a reconfigurable combinatorial processor has been designed and implemented and a number of methods and tools that support its partial dynamic reconfiguration have been developed. The second, application-specific, approach is oriented towards solving individual combinatorial problems. In particular, a novel architecture is proposed for solving the Boolean satisfiability problem with the aid of software and reconfigurable hardware. The adopted technique avoids instance-specific hardware compilation and permits problems that exceed the available logic resources to be solved. The possibility of implementing evolutionary strategies for the traveling salesman problem in reconfigurable hardware is also explored. This thesis extends the application domain of reconfigurable computing by demonstrating that it is effective in accelerating algorithms with complex control flows

    Spacecraft computing systems with high-level specifications and FPGAs

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2006.Includes bibliographical references (p. 169-171, first group).A typical modem spacecraft requires computer processing in every major subsystem. The most popular method to carry out these processing requirements involves the use of a primary computer based on microprocessors. To carry out each spacecraft's unique processing requirements, custom software is specified, written, compiled, and executed by the microprocessors. The current process leads to a dedicated group of software engineers to design and create spacecraft software. This process is expensive and error-prone. Errors that occur during the translation of subsystem specifications into software specifications have led to failures and anomalies. This thesis describes a new methodology and toolsets that allow spacecraft subsystem engineers to capture and analyze typical spacecraft processing requirements in a unified and formal specification methodology. Subsystem engineers capture processing requirements with a pair of formal high-level specification languages specifically designed for spacecraft requirements. Control-oriented requirements such as fault detection and isolation features are captured with SpecTRM-RL, while data-oriented requirements such as control law algorithms are captured in a new language and toolset called Octavia.(cont.) Once subsystems engineers have completed the high-level specifications, the specifications are automatically converted into a combination of software code and hardware descriptions using a set of autocode generators. Using recent advances in Field Programmable Gate Array (FPGA) technology, a unique computing system can be synthesized from the autocode generated components.by Elwin C. Ong.Ph.D

    Applications of reprogrammability in algorithm acceleration

    Get PDF
    This doctoral thesis consists of an introductory part and eight appended publications, which deal with hardware-based reprogrammability in algorithm acceleration with a specific emphasis on the possibilities offered by modern large-scale Field Programmable Gate Arrays (FPGAs) in computationally demanding applications. The historical evolution of both the theoretical and technological paths culminating in the introduction of reprogrammable logic devices is first outlined. This is followed by defining the commonly used terms in the thesis. The reprogrammable logic market is surveyed, and the architectural structures and the technological reasonings behind them are described in detail. As reprogrammable logic lies between Application Specific Integrated Circuits (ASICs) and general-purpose microprocessors in the implementation spectrum of electronics systems, special attention has been paid to differentiate these three implementation approaches. This has been done to emphasize, that reprogrammable logic offers much more than just a low-volume replacement for ASICs. Design systems for reprogrammable logic are investigated, as the learning curve associated with them is the main hurdle for software-oriented designers for using reprogrammable logic devices. The theoretically important topic of partial reprogrammability is described in detail, but it is concluded, that the practical problems in designing viable development platforms for partially reprogrammable systems will hinder its wide-spread adoption. The main technical, design-oriented, and economic applicability factors of reprogrammable logic are laid out. The main advantages of reprogrammable logic are their suitability for fine-grained bit-level parallelizable computing with a short time-to-market and low upfront costs. It is also concluded, that the main opportunities for reprogrammable logic lie in the potential of high-level design systems, and the ever-growing ASIC design gap. On the other hand, most power-conscious mass-market portable products do not seem to offer major new market potential for reprogrammable logic. The appended publications are examined and compared to contemporaneous research at other research institutions. The conclusion is that for relatively wide classes of well-defined computation problems, reprogrammable logic offers a more efficient solution than a software-centered approach, with a much shorter production cycle than is the case with ASICs.reviewe

    Introduction to Logic Circuits & Logic Design with VHDL

    Get PDF
    The overall goal of this book is to fill a void that has appeared in the instruction of digital circuits over the past decade due to the rapid abstraction of system design. Up until the mid-1980s, digital circuits were designed using classical techniques. Classical techniques relied heavily on manual design practices for the synthesis, minimization, and interfacing of digital systems. Corresponding to this design style, academic textbooks were developed that taught classical digital design techniques. Around 1990, large-scale digital systems began being designed using hardware description languages (HDL) and automated synthesis tools. Broad-scale adoption of this modern design approach spread through the industry during this decade. Around 2000, hardware description languages and the modern digital design approach began to be taught in universities, mainly at the senior and graduate level. There were a variety of reasons that the modern digital design approach did not penetrate the lower levels of academia during this time. First, the design and simulation tools were difficult to use and overwhelmed freshman and sophomore students. Second, the ability to implement the designs in a laboratory setting was infeasible. The modern design tools at the time were targeted at custom integrated circuits, which are cost- and time-prohibitive to implement in a university setting. Between 2000 and 2005, rapid advances in programmable logic and design tools allowed the modern digital design approach to be implemented in a university setting, even in lower-level courses. This allowed students to learn the modern design approach based on HDLs and prototype their designs in real hardware, mainly field programmable gate arrays (FPGAs). This spurred an abundance of textbooks to be authored teaching hardware description languages and higher levels of design abstraction. This trend has continued until today. While abstraction is a critical tool for engineering design, the rapid movement toward teaching only the modern digital design techniques has left a void for freshman- and sophomore-level courses in digital circuitry. Legacy textbooks that teach the classical design approach are outdated and do not contain sufficient coverage of HDLs to prepare the students for follow-on classes. Newer textbooks that teach the modern digital design approach move immediately into high-level behavioral modeling with minimal or no coverage of the underlying hardware used to implement the systems. As a result, students are not being provided the resources to understand the fundamental hardware theory that lies beneath the modern abstraction such as interfacing, gate-level implementation, and technology optimization. Students moving too rapidly into high levels of abstraction have little understanding of what is going on when they click the “compile and synthesize” button of their design tool. This leads to graduates who can model a breadth of different systems in an HDL but have no depth into how the system is implemented in hardware. This becomes problematic when an issue arises in a real design and there is no foundational knowledge for the students to fall back on in order to debug the problem

    Efficient implementation of video processing algorithms on FPGA

    Get PDF
    The work contained in this portfolio thesis was carried out as part of an Engineering Doctorate (Eng.D) programme from the Institute for System Level Integration. The work was sponsored by Thales Optronics, and focuses on issues surrounding the implementation of video processing algorithms on field programmable gate arrays (FPGA). A description is given of FPGA technology and the currently dominant methods of designing and verifying firmware. The problems of translating a description of behaviour into one of structure are discussed, and some of the latest methodologies for tackling this problem are introduced. A number of algorithms are then looked at, including methods of contrast enhancement, deconvolution, and image fusion. Algorithms are characterised according to the nature of their execution flow, and this is used as justification for some of the design choices that are made. An efficient method of performing large two-dimensional convolutions is also described. The portfolio also contains a discussion of an FPGA implementation of a PID control algorithm, an overview of FPGA dynamic reconfigurability, and the development of a demonstration platform for rapid deployment of video processing algorithms in FPGA hardware

    Introduction to Logic Circuits & Logic Design with Verilog

    Get PDF
    The overall goal of this book is to fill a void that has appeared in the instruction of digital circuits over the past decade due to the rapid abstraction of system design. Up until the mid-1980s, digital circuits were designed using classical techniques. Classical techniques relied heavily on manual design practices for the synthesis, minimization, and interfacing of digital systems. Corresponding to this design style, academic textbooks were developed that taught classical digital design techniques. Around 1990, large-scale digital systems began being designed using hardware description languages (HDL) and automated synthesis tools. Broad-scale adoption of this modern design approach spread through the industry during this decade. Around 2000, hardware description languages and the modern digital design approach began to be taught in universities, mainly at the senior and graduate level. There were a variety of reasons that the modern digital design approach did not penetrate the lower levels of academia during this time. First, the design and simulation tools were difficult to use and overwhelmed freshman and sophomore students. Second, the ability to implement the designs in a laboratory setting was infeasible. The modern design tools at the time were targeted at custom integrated circuits, which are cost- and time-prohibitive to implement in a university setting. Between 2000 and 2005, rapid advances in programmable logic and design tools allowed the modern digital design approach to be implemented in a university setting, even in lower-level courses. This allowed students to learn the modern design approach based on HDLs and prototype their designs in real hardware, mainly fieldprogrammable gate arrays (FPGAs). This spurred an abundance of textbooks to be authored, teaching hardware description languages and higher levels of design abstraction. This trend has continued until today. While abstraction is a critical tool for engineering design, the rapid movement toward teaching only the modern digital design techniques has left a void for freshman- and sophomore-level courses in digital circuitry. Legacy textbooks that teach the classical design approach are outdated and do not contain sufficient coverage of HDLs to prepare the students for follow-on classes. Newer textbooks that teach the modern digital design approach move immediately into high-level behavioral modeling with minimal or no coverage of the underlying hardware used to implement the systems. As a result, students are not being provided the resources to understand the fundamental hardware theory that lies beneath the modern abstraction such as interfacing, gate-level implementation, and technology optimization. Students moving too rapidly into high levels of abstraction have little understanding of what is going on when they click the “compile and synthesize” button of their design tool. This leads to graduates who can model a breadth of different systems in an HDL but have no depth into how the system is implemented in hardware. This becomes problematic when an issue arises in a real design and there is no foundational knowledge for the students to fall back on in order to debug the problem

    Embedded electronic systems driven by run-time reconfigurable hardware

    Get PDF
    Abstract This doctoral thesis addresses the design of embedded electronic systems based on run-time reconfigurable hardware technology –available through SRAM-based FPGA/SoC devices– aimed at contributing to enhance the life quality of the human beings. This work does research on the conception of the system architecture and the reconfiguration engine that provides to the FPGA the capability of dynamic partial reconfiguration in order to synthesize, by means of hardware/software co-design, a given application partitioned in processing tasks which are multiplexed in time and space, optimizing thus its physical implementation –silicon area, processing time, complexity, flexibility, functional density, cost and power consumption– in comparison with other alternatives based on static hardware (MCU, DSP, GPU, ASSP, ASIC, etc.). The design flow of such technology is evaluated through the prototyping of several engineering applications (control systems, mathematical coprocessors, complex image processors, etc.), showing a high enough level of maturity for its exploitation in the industry.Resumen Esta tesis doctoral abarca el diseño de sistemas electrónicos embebidos basados en tecnología hardware dinámicamente reconfigurable –disponible a través de dispositivos lógicos programables SRAM FPGA/SoC– que contribuyan a la mejora de la calidad de vida de la sociedad. Se investiga la arquitectura del sistema y del motor de reconfiguración que proporcione a la FPGA la capacidad de reconfiguración dinámica parcial de sus recursos programables, con objeto de sintetizar, mediante codiseño hardware/software, una determinada aplicación particionada en tareas multiplexadas en tiempo y en espacio, optimizando así su implementación física –área de silicio, tiempo de procesado, complejidad, flexibilidad, densidad funcional, coste y potencia disipada– comparada con otras alternativas basadas en hardware estático (MCU, DSP, GPU, ASSP, ASIC, etc.). Se evalúa el flujo de diseño de dicha tecnología a través del prototipado de varias aplicaciones de ingeniería (sistemas de control, coprocesadores aritméticos, procesadores de imagen, etc.), evidenciando un nivel de madurez viable ya para su explotación en la industria.Resum Aquesta tesi doctoral està orientada al disseny de sistemes electrònics empotrats basats en tecnologia hardware dinàmicament reconfigurable –disponible mitjançant dispositius lògics programables SRAM FPGA/SoC– que contribueixin a la millora de la qualitat de vida de la societat. S’investiga l’arquitectura del sistema i del motor de reconfiguració que proporcioni a la FPGA la capacitat de reconfiguració dinàmica parcial dels seus recursos programables, amb l’objectiu de sintetitzar, mitjançant codisseny hardware/software, una determinada aplicació particionada en tasques multiplexades en temps i en espai, optimizant així la seva implementació física –àrea de silici, temps de processat, complexitat, flexibilitat, densitat funcional, cost i potència dissipada– comparada amb altres alternatives basades en hardware estàtic (MCU, DSP, GPU, ASSP, ASIC, etc.). S’evalúa el fluxe de disseny d’aquesta tecnologia a través del prototipat de varies aplicacions d’enginyeria (sistemes de control, coprocessadors aritmètics, processadors d’imatge, etc.), demostrant un nivell de maduresa viable ja per a la seva explotació a la indústria
    corecore