19,242 research outputs found

    Dynamic Energy Management for Chip Multi-processors under Performance Constraints

    Get PDF
    We introduce a novel algorithm for dynamic energy management (DEM) under performance constraints in chip multi-processors (CMPs). Using the novel concept of delayed instructions count, performance loss estimations are calculated at the end of each control period for each core. In addition, a Kalman filtering based approach is employed to predict workload in the next control period for which voltage-frequency pairs must be selected. This selection is done with a novel dynamic voltage and frequency scaling (DVFS) algorithm whose objective is to reduce energy consumption but without degrading performance beyond the user set threshold. Using our customized Sniper based CMP system simulation framework, we demonstrate the effectiveness of the proposed algorithm for a variety of benchmarks for 16 core and 64 core network-on-chip based CMP architectures. Simulation results show consistent energy savings across the board. We present our work as an investigation of the tradeoff between the achievable energy reduction via DVFS when predictions are done using the effective Kalman filter for different performance penalty thresholds

    Improving practical sensitivity of energy optimized wake-up receivers: proof of concept in 65nm CMOS

    Full text link
    We present a high performance low-power digital base-band architecture, specially designed for an energy optimized duty-cycled wake-up receiver scheme. Based on a careful wake-up beacon design, a structured wake-up beacon detection technique leads to an architecture that compensates for the implementation loss of a low-power wake-up receiver front-end at low energy and area costs. Design parameters are selected by energy optimization and the architecture is easily scalable to support various network sizes. Fabricated in 65nm CMOS, the digital base-band consumes 0.9uW (V_DD=0.37V) in sub-threshold operation at 250kbps, with appropriate 97% wake-up beacon detection and 0.04% false alarm probabilities. The circuit is fully functional at a minimum V_DD of 0.23V at f_max=5kHz and 0.018uW power consumption. Based on these results we show that our digital base-band can be used as a companion to compensate for front-end implementation losses resulting from the limited wake-up receiver power budget at a negligible cost. This implies an improvement of the practical sensitivity of the wake-up receiver, compared to what is traditionally reported.Comment: Submitted to IEEE Sensors Journa

    TROUTE : a reconfigurability-aware FPGA router

    Get PDF
    corecore