227 research outputs found

    Spin-Transfer-Torque (STT) Devices for On-chip Memory and Their Applications to Low-standby Power Systems

    Get PDF
    With the scaling of CMOS technology, the proportion of the leakage power to total power consumption increases. Leakage may account for almost half of total power consumption in high performance processors. In order to reduce the leakage power, there is an increasing interest in using nonvolatile storage devices for memory applications. Among various promising nonvolatile memory elements, spin-transfer torque magnetic RAM (STT-MRAM) is identified as one of the most attractive alternatives to conventional SRAM. However, several design challenges of STT-MRAM such as shared read and write current paths, single-ended sensing, and high dynamic power are major challenges to be overcome to make it suitable for on-chip memories. To mitigate such problems, we propose a domain wall coupling based spin-transfer torque (DWCSTT) device for on-chip caches. Our proposed DWCSTT bit-cell decouples the read and the write current paths by the electrically-insulating magnetic coupling layer so that we can separately optimize read operation without having an impact on write-ability. In addition, the complementary polarizer structure in the read path of the DWCSTT device allows DWCSTT to enable self-referenced differential sensing. DWCSTT bit-cells improve the write power consumption due to the low electrical resistance of the write current path. Furthermore, we also present three different bit-cell level design techniques of Spin-Orbit Torque MRAM (SOT-MRAM) for alleviating some of the inefficiencies of conventional magnetic memories while maintaining the advantages of spin-orbit torque (SOT) based novel switching mechanism such as low write current requirement and decoupled read and write current path. Our proposed SOT-MRAM with supporting dual read/write ports (1R/1W) can address the issue of high-write latency of STT-MRAM by simultaneous 1R/1W accesses. Second, we propose a new type of SOT-MRAM which uses only one access transistor along with a Schottky diode in order to mitigate the area-overhead caused by two access transistors in conventional SOT-MRAM. Finally, a new design technique of SOT-MRAM is presented to improve the integration density by utilizing a shared bit-line structure

    A True Random Number Generator for Probabilistic Computing using Stochastic Magnetic Actuated Random Transducer Devices

    Full text link
    Magnetic tunnel junctions (MTJs), which are the fundamental building blocks of spintronic devices, have been used to build true random number generators (TRNGs) with different trade-offs between throughput, power, and area requirements. MTJs with high-barrier magnets (HBMs) have been used to generate random bitstreams with \lesssim 200~Mb/s throughput and pJ/bit energy consumption. A high temperature sensitivity, however, adversely affects their performance as a TRNG. Superparamagnetic MTJs employing low-barrier magnets (LBMs) have also been used for TRNG operation. Although LBM-based MTJs can operate at low energy, they suffer from slow dynamics, sensitivity to process variations, and low fabrication yield. In this paper, we model a TRNG based on medium-barrier magnets (MBMs) with perpendicular magnetic anisotropy. The proposed MBM-based TRNG is driven with short voltage pulses to induce ballistic, yet stochastic, magnetization switching. We show that the proposed TRNG can operate at frequencies of about 500~MHz while consuming less than 100~fJ/bit of energy. In the short-pulse ballistic limit, the switching probability of our device shows robustness to variations in temperature and material parameters relative to LBMs and HBMs. Our results suggest that MBM-based MTJs are suitable candidates for building fast and energy-efficient TRNG hardware units for probabilistic computing.Comment: 10 pages, 10 figures, Accepted at ISQED 2023 for poster presentatio

    Integrated Circuits/Microchips

    Get PDF
    With the world marching inexorably towards the fourth industrial revolution (IR 4.0), one is now embracing lives with artificial intelligence (AI), the Internet of Things (IoTs), virtual reality (VR) and 5G technology. Wherever we are, whatever we are doing, there are electronic devices that we rely indispensably on. While some of these technologies, such as those fueled with smart, autonomous systems, are seemingly precocious; others have existed for quite a while. These devices range from simple home appliances, entertainment media to complex aeronautical instruments. Clearly, the daily lives of mankind today are interwoven seamlessly with electronics. Surprising as it may seem, the cornerstone that empowers these electronic devices is nothing more than a mere diminutive semiconductor cube block. More colloquially referred to as the Very-Large-Scale-Integration (VLSI) chip or an integrated circuit (IC) chip or simply a microchip, this semiconductor cube block, approximately the size of a grain of rice, is composed of millions to billions of transistors. The transistors are interconnected in such a way that allows electrical circuitries for certain applications to be realized. Some of these chips serve specific permanent applications and are known as Application Specific Integrated Circuits (ASICS); while, others are computing processors which could be programmed for diverse applications. The computer processor, together with its supporting hardware and user interfaces, is known as an embedded system.In this book, a variety of topics related to microchips are extensively illustrated. The topics encompass the physics of the microchip device, as well as its design methods and applications

    BOOLEAN AND BRAIN-INSPIRED COMPUTING USING SPIN-TRANSFER TORQUE DEVICES

    Get PDF
    Several completely new approaches (such as spintronic, carbon nanotube, graphene, TFETs, etc.) to information processing and data storage technologies are emerging to address the time frame beyond current Complementary Metal-Oxide-Semiconductor (CMOS) roadmap. The high speed magnetization switching of a nano-magnet due to current induced spin-transfer torque (STT) have been demonstrated in recent experiments. Such STT devices can be explored in compact, low power memory and logic design. In order to truly leverage STT devices based computing, researchers require a re-think of circuit, architecture, and computing model, since the STT devices are unlikely to be drop-in replacements for CMOS. The potential of STT devices based computing will be best realized by considering new computing models that are inherently suited to the characteristics of STT devices, and new applications that are enabled by their unique capabilities, thereby attaining performance that CMOS cannot achieve. The goal of this research is to conduct synergistic exploration in architecture, circuit and device levels for Boolean and brain-inspired computing using nanoscale STT devices. Specifically, we first show that the non-volatile STT devices can be used in designing configurable Boolean logic blocks. We propose a spin-memristor threshold logic (SMTL) gate design, where memristive cross-bar array is used to perform current mode summation of binary inputs and the low power current mode spintronic threshold device carries out the energy efficient threshold operation. Next, for brain-inspired computing, we have exploited different spin-transfer torque device structures that can implement the hard-limiting and soft-limiting artificial neuron transfer functions respectively. We apply such STT based neuron (or ‘spin-neuron’) in various neural network architectures, such as hierarchical temporal memory and feed-forward neural network, for performing “human-like” cognitive computing, which show more than two orders of lower energy consumption compared to state of the art CMOS implementation. Finally, we show the dynamics of injection locked Spin Hall Effect Spin-Torque Oscillator (SHE-STO) cluster can be exploited as a robust multi-dimensional distance metric for associative computing, image/ video analysis, etc. Our simulation results show that the proposed system architecture with injection locked SHE-STOs and the associated CMOS interface circuits can be suitable for robust and energy efficient associative computing and pattern matching

    Energy efficient hybrid computing systems using spin devices

    Get PDF
    Emerging spin-devices like magnetic tunnel junctions (MTJ\u27s), spin-valves and domain wall magnets (DWM) have opened new avenues for spin-based logic design. This work explored potential computing applications which can exploit such devices for higher energy-efficiency and performance. The proposed applications involve hybrid design schemes, where charge-based devices supplement the spin-devices, to gain large benefits at the system level. As an example, lateral spin valves (LSV) involve switching of nanomagnets using spin-polarized current injection through a metallic channel such as Cu. Such spin-torque based devices possess several interesting properties that can be exploited for ultra-low power computation. Analog characteristic of spin current facilitate non-Boolean computation like majority evaluation that can be used to model a neuron. The magneto-metallic neurons can operate at ultra-low terminal voltage of ∼20mV, thereby resulting in small computation power. Moreover, since nano-magnets inherently act as memory elements, these devices can facilitate integration of logic and memory in interesting ways. The spin based neurons can be integrated with CMOS and other emerging devices leading to different classes of neuromorphic/non-Von-Neumann architectures. The spin-based designs involve `mixed-mode\u27 processing and hence can provide very compact and ultra-low energy solutions for complex computation blocks, both digital as well as analog. Such low-power, hybrid designs can be suitable for various data processing applications like cognitive computing, associative memory, and currentmode on-chip global interconnects. Simulation results for these applications based on device-circuit co-simulation framework predict more than ∼100x improvement in computation energy as compared to state of the art CMOS design, for optimal spin-device parameters

    Efficient Neuromorphic Computing Enabled by Spin-Transfer Torque: Devices, Circuits and Systems

    Get PDF
    Present day computers expend orders of magnitude more computational resources to perform various cognitive and perception related tasks that humans routinely perform everyday. This has recently resulted in a seismic shift in the field of computation where research efforts are being directed to develop a neurocomputer that attempts to mimic the human brain by nanoelectronic components and thereby harness its efficiency in recognition problems. Bridging the gap between neuroscience and nanoelectronics, this thesis demonstrates the encoding of biological neural and synaptic functionalities in the underlying physics of electron spin. Description of various spin-transfer torque mechanisms that can be potentially utilized for realizing neuro-mimetic device structures is provided. A cross-layer perspective extending from the device to the circuit and system level is presented to envision the design of an All-Spin neuromorphic processor enabled with on-chip learning functionalities. Device-circuit-algorithm co-simulation framework calibrated to experimental results suggest that such All-Spin neuromorphic systems can potentially achieve almost two orders of magnitude energy improvement in comparison to state-of-the-art CMOS implementations

    The 21st Aerospace Mechanisms Symposium

    Get PDF
    During the symposium technical topics addressed included deployable structures, electromagnetic devices, tribology, actuators, latching devices, positioning mechanisms, robotic manipulators, and automated mechanisms synthesis. A summary of the 20th Aerospace Mechanisms Symposium panel discussions is included as an appendix. However, panel discussions on robotics for space and large space structures which were held are not presented herein
    corecore