81 research outputs found

    Diagnostic Palpation in Osteopathic Medicine: A Putative Neurocognitive Model of Expertise

    Get PDF
    This thesis examines the extent to which the development of expertise in diagnostic palpation in osteopathic medicine is associated with changes in cognitive processing. Chapter 2 and Chapter 3 review, respectively, the literature on the role of analytical and non-analytical processing in osteopathic and medical clinical decision making; and the relevant research on the use of vision and haptics and the development of expertise within the context of an osteopathic clinical examination. The two studies reported in Chapter 4 examined the mental representation of knowledge and the role of analogical reasoning in osteopathic clinical decision making. The results reported there demonstrate that the development of expertise in osteopathic medicine is associated with the processes of knowledge encapsulation and script formation. The four studies reported in Chapters 5 and 6 investigate the way in which expert osteopaths use their visual and haptic systems in the diagnosis of somatic dysfunction. The results suggest that ongoing clinical practice enables osteopaths to combine visual and haptic sensory signals in a more efficient manner. Such visuo-haptic sensory integration is likely to be facilitated by top-down processing associated with visual, tactile, and kinaesthetic mental imagery. Taken together, the results of the six studies reported in this thesis indicate that the development of expertise in diagnostic palpation in osteopathic medicine is associated with changes in cognitive processing. Whereas the experts’ diagnostic judgments are heavily influenced by top-down, non-analytical processing; students rely, primarily, on bottom-up sensory processing from vision and haptics. Ongoing training and clinical practice are likely to lead to changes in the clinician’s neurocognitive architecture. This thesis proposes an original model of expertise in diagnostic palpation which has implications for osteopathic education. Students and clinicians should be encouraged to appraise the reliability of different sensory cues in the context of clinical examination, combine sensory data from different channels, and consider using both analytical and nonanalytical reasoning in their decision making. Importantly, they should develop their skills of criticality and their ability to reflect on, and analyse their practice experiences in and on action

    Divisions Within the Posterior Parietal Cortex Help Touch Meet Vision

    Get PDF
    The parietal cortex is divided into two major functional regions: the anterior parietal cortex that includes primary somatosensory cortex, and the posterior parietal cortex (PPC) that includes the rest of the parietal lobe. The PPC contains multiple representations of space. In Dijkerman and de Haan’s (see record 2007-13802-022) model, higher spatial representations are separate from PPC functions. This model should be developed further so that the functions of the somatosensory system are integrated with specific functions within the PPC and higher spatial representations. Through this further specification of the model, one can make better predictions regarding functional interactions between somatosensory and visual systems

    7th TĂĽbingen Perception Conference: TWK 2004

    No full text

    A role for sensory areas in coordinating active sensing motions

    Full text link
    Active sensing, which incorporates closed-loop behavioral selection of information during sensory acquisition, is an important feature of many sensory modalities. We used the rodent whisker tactile system as a platform for studying the role cortical sensory areas play in coordinating active sensing motions. We examined head and whisker motions of freely moving mice performing a tactile search for a randomly located reward, and found that mice select from a diverse range of available active sensing strategies. In particular, mice selectively employed a strategy we term contact maintenance, where whisking is modulated to counteract head motion and sustain repeated contacts, but only when doing so is likely to be useful for obtaining reward. The context dependent selection of sensing strategies, along with the observation of whisker repositioning prior to head motion, suggests the possibility of higher level control, beyond simple reflexive mechanisms. In order to further investigate a possible role for primary somatosensory cortex (SI) in coordinating whisk-by-whisk motion, we delivered closed-loop optogenetic feedback to SI, time locked to whisker motions estimated through facial electromyography. We found that stimulation regularized whisking (increasing overall periodicity), and shifted whisking frequency, changes that emulate behaviors of rodents actively contacting objects. Importantly, we observed changes to whisk timing only for stimulation locked to whisker protractions, possibly encoding that natural contacts are more likely during forward motion of the whiskers. Simultaneous neural recordings from SI show cyclic changes in excitability, specifically that responses to excitatory stimulation locked to whisker retractions appeared suppressed in contrast to stimulation during protractions that resulted in changes to whisk timing. Both effects are evident within single whisks. These findings support a role for sensory cortex in guiding whisk-by-whisk motor outputs, but suggest a coupling that depends on behavioral context, occurring on multiple timescales. Elucidating a role for sensory cortex in motor outputs is important to understanding active sensing, and may further provide novel insights to guide the design of sensory neuroprostheses that exploit active sensing context
    • …
    corecore